• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
HE Qingsong. Optimal Implementation of Double Hot-standby in Coal Mine Safety Monitoring System[J]. Safety in Coal Mines, 2018, 49(7): 109-111.
Citation: HE Qingsong. Optimal Implementation of Double Hot-standby in Coal Mine Safety Monitoring System[J]. Safety in Coal Mines, 2018, 49(7): 109-111.

Optimal Implementation of Double Hot-standby in Coal Mine Safety Monitoring System

More Information
  • Published Date: July 19, 2018
  • In order to solve the problem of the whole mine or large area communication failure caused by the fault of the core communication equipment in the traditional coal mine double hot-standby system, this paper introduces the system structure and working process of double hot-standby in traditional coal mine safety monitoring system, and proposes a system optimization scheme by using redundant core communication equipment integrating into double hot-standby system, and explains the use method and precautions. The practical application verifies that this optimization scheme can effectively avoid the communication failure in the monitoring system.
  • [1]
    何青松.煤矿安全监控系统分级断电功能的实现[J].工矿自动化,2014,40(5):94-96.
    [2]
    付文俊.KJF2000煤矿安全监控系统与井下工业光纤环网接入技术的设计[J].煤矿安全,2011,42(11):46-50.
    [3]
    高俊,雷兴,邹德东.光纤以太环网+ CAN 总线传输在矿井安全生产监控系统中的应用[J].煤矿安全,2011, 42(9): 128 -130.
    [4]
    刘业辉.基于光纤工业以太环网的矿井安全监控系统设计及应用[J].软件,2014,35(1):123-124.
    [5]
    王伟,马小军,王健,等.基于光纤以太环网和现场总线的煤矿安全监控系统的应用[J].测控技术,2013, 32(5):82-84.
    [6]
    国家安全生产监督管理局,国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出版社,2016.
    [7]
    AQ 6201—2006煤矿安全监控系统通用技术要求[S].
    [8]
    AQ 1029—2007煤矿安全监控系统及检测仪器使用管理规范[S].
    [9]
    张金豪.ES210模块在煤矿瓦斯监控系统双机热备中的应用[J].矿业安全与环保,2011,38(6):63-66.
    [10]
    郭江涛.高可靠安全监控系统双机热备方法[J].煤矿安全, 2012,43(11):118-120.
    [11]
    李明建,刁勇,张轶.基于双机热备的瓦斯灾害预警系统设计[J].工矿自动化,2013,39(5):19-23.
    [12]
    丁瑞奇.煤矿监控系统双机热备数据同步软件设计[J].工矿自动化,2014,40(11):18-22.
    [13]
    钟宇.煤矿企业纯软件方式的双机热备系统研究[J].工矿自动化,2012(8):83-86.
  • Related Articles

    [1]WANG Liancong. Quantitative Method of Fourier Transform Infrared Spectroscopy for Disaster Gases in Coalmine[J]. Safety in Coal Mines, 2017, 48(3): 13-17.
    [2]GAO Hao. Application of Spectral Remote Sensing Detection Technology in Coal Mine Environmental Monitoring[J]. Safety in Coal Mines, 2016, 47(10): 112-113,117.
    [3]ZHOU Haikun. Laser Methane Telemetry Technology Based on TDLAS[J]. Safety in Coal Mines, 2015, 46(7): 113-115.
    [4]MA Long. Application of TDLAS Technology in the Field of Coal Mine Gas Disaster Detection[J]. Safety in Coal Mines, 2015, 46(6): 87-89.
    [5]FENG Wenbin. Modulation Technology of Multi-gas Spectrum Line in Mine-used Spectral Equipment[J]. Safety in Coal Mines, 2015, 46(5): 117-120.
    [6]GAO Hao. Mine-used Optical Spectrum Analyzer Based on TDLAS Technology[J]. Safety in Coal Mines, 2015, 46(3): 94-96.
    [7]GAO Hao. Application of Wavelength Control Technology in Mine-used Laser Methane Sensor[J]. Safety in Coal Mines, 2014, 45(12): 102-105.
    [8]LI Qiang. An Infrared Gas Detector Based on Spectroscopy Differential Absorption Principle[J]. Safety in Coal Mines, 2013, 44(11): 111-113.
    [9]GAO Hao. A Methane Sensor Based on Tunable Laser Detection Technology[J]. Safety in Coal Mines, 2013, 44(6): 94-95.
    [10]PAN Ya-nan. The Laser-type Methane Sensor Based on the Spectral Absorption[J]. Safety in Coal Mines, 2013, 44(1): 99-101.

Catalog

    Article views (182) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return