Citation: | SUN Xueyang, LIU Ziqiang, LI Cheng, MIAO Lintian. Research Progress on Water-preserving Mining in Yushenfu Mining Area[J]. Safety in Coal Mines, 2018, 49(7): 66-70. |
[1] |
孙学阳,梁倩文,苗霖田.保水采煤技术研究现状及发展趋势[J].煤炭科学技术,2017,45(1):54-59.
|
[2] |
范立民.保水采煤是神府东胜煤田开发可持续发展的关键[J].地质科技管理,1998(5):28-29.
|
[3] |
范立民,王双明,马雄德.保水采煤新思路的典型实例[J].矿业安全与环保,2009,36(1):61-62.
|
[4] |
王文学,隋旺华,董青红,等.松散层下覆岩裂隙采后闭合效应及重复开采覆岩破坏预测[J].煤炭学报,2013,38(10):1728-1734.
|
[5] |
范立民.保水采煤的科学内涵[J].煤炭学报,2017,42(1):27-35.
|
[6] |
李文平,李涛,陈伟,等.采空区储水-干旱区保水采煤新途径[J].工程地质学报,2014(5):1003-1007.
|
[7] |
施龙青,辛恒奇,翟培合,等.大采深条件下导水裂隙带高度计算研究[J].中国矿业大学学报,2012,41(1):37-41.
|
[8] |
王连国,王占盛,黄继辉,等.薄基岩厚风积沙浅埋煤层导水裂隙带高度预计[J].采矿与安全工程学报,2012,29(5):607-612.
|
[9] |
车晓阳,侯恩科,谢晓深,等.煤层开采导水裂隙带发育高度分析[J].中国科技论文,2016,11(3):270.
|
[10] |
黄万朋,高延法,王波,等.覆岩组合结构下导水裂隙带演化规律与发育高度分析[J].采矿与安全工程学报,2017,34(2):330-335.
|
[11] |
陈凯,严桂凤,文江,等.趋势面分析法在预测导水裂隙带高度中的应用[J].中国煤炭,2013(2):52-54.
|
[12] |
马亚杰,武强,章之燕,等.煤层开采顶板导水裂隙带高度预测研究[J].煤炭科学技术,2008,36(5):59.
|
[13] |
鲍井龙,杨从文,王继安.“钻孔双端封堵测漏”法在采煤工作面裂高测试中的应用[J].煤炭技术,2011, 30(4):77-78.
|
[14] |
孔杰,高峰,蒋升,等.极近距离下分层开采导水裂隙带发育高度研究[J].煤矿安全,2013,44(1):22-24.
|
[15] |
赵子浩,刘进晓,王来河,等.近水平煤层覆岩导水裂隙带高度预计与实测[J].矿业安全与环保,2017,44(2):66-69.
|
[16] |
刘伟韬,陈志兴,张茂鹏.覆岩裂隙带发育高度数值模拟和现场实测[J].矿业安全与环保,2016,43(1):57-60.
|
[17] |
王启庆,李文平,李涛.陕北生态脆弱区保水采煤地质条件分区类型研究[J].工程地质学报,2014,22(3):515-521.
|
[18] |
王桦,程桦,刘盛东.基于并行电阻率法的导水断裂带适时探测技术研究[J].煤矿安全,2007,38(7):1.
|
[19] |
方刚. 焦坪矿区某井田综采覆岩导水裂隙带高度研究[J]. 煤矿安全,2015,46(S1):22-25.
|
[20] |
缪协兴,浦海,白海波.隔水关键层原理及其在保水采煤中的应用研究[J].中国矿业大学学报,2008,37(1):1-4.
|
[21] |
孔海陵,陈占清,卜万奎,等.承载关键层、隔水关键层和渗流关键层关系初探[J].煤炭学报,2008,33(5):485-488.
|
[22] |
许家林,朱卫兵,王晓振.基于关键层位置的导水裂隙带高度预计方法[J].煤炭学报,2012,37(5):762.
|
[23] |
许家林,王晓振,刘文涛,等.覆岩主关键层位置对导水裂隙带高度的影响[J].岩石力学与工程学报,2009,28(2):380-385.
|
[24] |
王晓振,许家林,朱卫兵.主关键层结构稳定性对导水裂隙演化的影响研究[J].煤炭学报,2012,37(4):606-612.
|
[25] |
Ma Liqiang, Jin Zhiyuan, Liang Jimeng.Simulation of water resource loss in short-distance coal seams disturbed by repeated mining[J]. Environmental Earth Sciences, 2015, 74(7): 5653-5662.
|
[26] |
Ma Liqiang, Cao Xinqi, Liu Quan. Simulation study on water preserved mining in multi-excavation disturbed zone in close-distance seams [J]. Environmental Engineering and Management Journal, 2013, 12(9):1849.
|
[27] |
马雄德,范立民,张晓团,等.基于植被地下水关系的保水采煤研究[J].煤炭学报,2017,42(5):1277.
|
[28] |
马雄德,范立民,严戈,等.植被对矿区地下水位变化响应研究[J].煤炭学报,2017,42(1):44-49.
|
[29] |
黄庆享,张文忠.浅埋煤层条带充填保水开采岩层控制[M].北京: 科学出版社,2014.
|
[30] |
范立民,马雄德,冀瑞君.西部生态脆弱矿区保水采煤研究与实践进展[J].煤炭学报,2015,40(8):1711-1717.
|
[31] |
王双明,黄庆享,范立民,等.生态脆弱区煤炭开发与生态水位保护[M].北京:科学出版社,2010.
|
[32] |
王双明,范立民,马雄德.生态脆弱区煤炭开发与生态水位保护[C]//2010 年全国采矿科学技术高峰论坛论文集.哈尔滨:中国金属学会采矿分会,2010: 212-216.
|
[33] |
王双明,黄庆享,范立民,等.生态脆弱矿区含( 隔) 水层特征及保水开采分区研究[J].煤炭学报,2010, 35(1):7-14.
|
[34] |
马雄德,范立民,张晓团,等.榆神府矿区水体湿地演化驱动力分析[J].煤炭学报,2015,40(5):1126.
|
[35] |
王磊,张鲜妮,郭广礼,等.固体密实充填开采地表沉陷预计模型研究[J].岩土力学,2014,35(7): 1973.
|
[36] |
Zhang Jixiong, Zhang Qiang, Sun Qiang, et al.Surface subsidence control theory and application to backfill coal mining technology[J]. Environmental Earth Sciences, 2015, 74(2): 1439-1448.
|
[37] |
缪协兴,黄艳利,巨峰,等.密实充填采煤的岩层移动理论研究[J].中国矿业大学学报,2012,41(6):863.
|
[38] |
吴晓刚,刘康,葛帅帅,等.固体充填材料压实特性及应用[J].煤矿安全,2016,47(8):41-44.
|
[39] |
刘鹏亮,张华兴,崔锋,等.风积砂似膏体机械化充填保水采煤技术与实践[J].煤炭学报,2017,42(1):118-126.
|
[40] |
刘鹏亮,孙凯华.风积砂似膏体充填站优化设计与实践[J].煤矿开采,2016,21(6):65-67.
|
[41] |
蒋泽泉.充填保水采煤技术在榆神矿区的应用效果[C]//陕西省煤炭学会.煤矿绿色高效开采技术研究——陕西省煤炭学会学术年会论文集(2016).西安:陕西省煤炭学会,2016:4.
|
[42] |
邵小平,石平五,王怀贤.陕北中小煤矿条带保水开采煤柱稳定性研究[J].煤炭技术,2009,28(12):8.
|
[43] |
马立强,张东升,乔京利,等.浅埋煤层采动覆岩导水通道分布特征试验研究[J].辽宁工程技术大学学报(自然科学版),2008,27(5):649-652.
|
[44] |
范立民,蒋泽泉.烧变岩地下水的形成及保水采煤新思路[J].煤炭工程,2006(4):40-41.
|
[45] |
顾大钊.煤矿地下水库理论框架和技术体系[J].煤炭学报,2015,40(2):239-246.
|
[46] |
鞠金峰,许家林,朱卫兵.西部缺水矿区地下水库保水的库容研究[J].煤炭学报,2017,42(2):381-387.
|
[1] | JI Zhaoyang, CHEN Xiujie, FENG Qian, ZHANG Yiran, MIAO Dejun. Experimental research and application of high pressure spray cooling in long distance coal mining face[J]. Safety in Coal Mines, 2024, 55(10): 72-81. DOI: 10.13347/j.cnki.mkaq.20231466 |
[2] | ZHANG Jian, CAI Maolin, ZHANG Pengyan, XU Bo, JI Dege. Cold water interception cooling technology for surrounding rock of heat-damaged mine[J]. Safety in Coal Mines, 2023, 54(3): 1-8. |
[3] | WANG Chunyao, ZHOU Jian, JIAN Junchang, ZHENG Xingbo, LUO Wei. Ventilation refrigeration and cooling technology of high temperature heat damaged mine[J]. Safety in Coal Mines, 2022, 53(9): 244-250. |
[4] | LUO Tienan. Optical refraction detection method for emulsion concentration[J]. Safety in Coal Mines, 2021, 52(3): 156-158,164. |
[5] | LI Wenfu, SONG Zhanhong, ZHANG Hongwei, WU Fengliang. Moving Refrigeration and Cooling Technology for Coal Mining Face at the First Level Heat Damage Area[J]. Safety in Coal Mines, 2020, 51(5): 93-97. |
[6] | XIN Song, ZHANG Long, ZHANG Qi. Optimum Selection of Cooling Way for Long Distance and Large Width Coal Mining Face[J]. Safety in Coal Mines, 2018, 49(4): 173-176. |
[7] | YAN Le, CHEN Donghong, KONG Lingjie, CHOU Xiujian. Wireless and Passive Vibration Monitoring System for Mine Emulsion Pump[J]. Safety in Coal Mines, 2016, 47(4): 139-142. |
[8] | LUO Wei, SONG Xuanmin, LIU Cheng. Heat Damage Control Technology in More Than 1 000 m Deep Mine[J]. Safety in Coal Mines, 2014, 45(8): 88-91. |
[9] | HE Fu-lian, YANG Bo-da, YANG Hong-zeng, XIE Sheng-rong, WANG Bo, DUAN Qi-tao. Ultrasound Microseism Recognition Principle and Detection Practice of Leak Failures for Powered Support in Fully Mechanized Caving Face[J]. Safety in Coal Mines, 2012, 43(6): 129-131,136. |
[10] | SHI Li-ping, HAN Li, LIU Jing-jing, LI Ning. The Design of Mine-used Emulsion Pump Intelligent Control System[J]. Safety in Coal Mines, 2012, 43(6): 72-73. |