• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
SUN Xueyang, LIU Ziqiang, LI Cheng, MIAO Lintian. Research Progress on Water-preserving Mining in Yushenfu Mining Area[J]. Safety in Coal Mines, 2018, 49(7): 66-70.
Citation: SUN Xueyang, LIU Ziqiang, LI Cheng, MIAO Lintian. Research Progress on Water-preserving Mining in Yushenfu Mining Area[J]. Safety in Coal Mines, 2018, 49(7): 66-70.

Research Progress on Water-preserving Mining in Yushenfu Mining Area

More Information
  • Published Date: July 19, 2018
  • To realize the green mining of Yushenfu Mining Area, one of the major coal resources in China, and protect the local ecological environment, it is required to adopt the technology of water-retaining and mining. Based on the overviews of the recent achievement and the latest development of coal mining under water-preserving, we sum up the theoretical development of water-preserved mining technology and the current situation of engineering practice. In addition, the development trend in this field is pointed out. The results show that the core of water preserved mining is to accurately predict the development height of water flowing fractured zone. According to the hydro-geological conditions and the physical and mechanical properties of the strata in the main coal seam, the spatial relationship between the coal seam, the primary key layer and the aquifer is determined. It is the development trend of water preserved mining to accurately predict the height of water flowing fractured zone and to study the storage condition of groundwater transfer.
  • [1]
    孙学阳,梁倩文,苗霖田.保水采煤技术研究现状及发展趋势[J].煤炭科学技术,2017,45(1):54-59.
    [2]
    范立民.保水采煤是神府东胜煤田开发可持续发展的关键[J].地质科技管理,1998(5):28-29.
    [3]
    范立民,王双明,马雄德.保水采煤新思路的典型实例[J].矿业安全与环保,2009,36(1):61-62.
    [4]
    王文学,隋旺华,董青红,等.松散层下覆岩裂隙采后闭合效应及重复开采覆岩破坏预测[J].煤炭学报,2013,38(10):1728-1734.
    [5]
    范立民.保水采煤的科学内涵[J].煤炭学报,2017,42(1):27-35.
    [6]
    李文平,李涛,陈伟,等.采空区储水-干旱区保水采煤新途径[J].工程地质学报,2014(5):1003-1007.
    [7]
    施龙青,辛恒奇,翟培合,等.大采深条件下导水裂隙带高度计算研究[J].中国矿业大学学报,2012,41(1):37-41.
    [8]
    王连国,王占盛,黄继辉,等.薄基岩厚风积沙浅埋煤层导水裂隙带高度预计[J].采矿与安全工程学报,2012,29(5):607-612.
    [9]
    车晓阳,侯恩科,谢晓深,等.煤层开采导水裂隙带发育高度分析[J].中国科技论文,2016,11(3):270.
    [10]
    黄万朋,高延法,王波,等.覆岩组合结构下导水裂隙带演化规律与发育高度分析[J].采矿与安全工程学报,2017,34(2):330-335.
    [11]
    陈凯,严桂凤,文江,等.趋势面分析法在预测导水裂隙带高度中的应用[J].中国煤炭,2013(2):52-54.
    [12]
    马亚杰,武强,章之燕,等.煤层开采顶板导水裂隙带高度预测研究[J].煤炭科学技术,2008,36(5):59.
    [13]
    鲍井龙,杨从文,王继安.“钻孔双端封堵测漏”法在采煤工作面裂高测试中的应用[J].煤炭技术,2011, 30(4):77-78.
    [14]
    孔杰,高峰,蒋升,等.极近距离下分层开采导水裂隙带发育高度研究[J].煤矿安全,2013,44(1):22-24.
    [15]
    赵子浩,刘进晓,王来河,等.近水平煤层覆岩导水裂隙带高度预计与实测[J].矿业安全与环保,2017,44(2):66-69.
    [16]
    刘伟韬,陈志兴,张茂鹏.覆岩裂隙带发育高度数值模拟和现场实测[J].矿业安全与环保,2016,43(1):57-60.
    [17]
    王启庆,李文平,李涛.陕北生态脆弱区保水采煤地质条件分区类型研究[J].工程地质学报,2014,22(3):515-521.
    [18]
    王桦,程桦,刘盛东.基于并行电阻率法的导水断裂带适时探测技术研究[J].煤矿安全,2007,38(7):1.
    [19]
    方刚. 焦坪矿区某井田综采覆岩导水裂隙带高度研究[J]. 煤矿安全,2015,46(S1):22-25.
    [20]
    缪协兴,浦海,白海波.隔水关键层原理及其在保水采煤中的应用研究[J].中国矿业大学学报,2008,37(1):1-4.
    [21]
    孔海陵,陈占清,卜万奎,等.承载关键层、隔水关键层和渗流关键层关系初探[J].煤炭学报,2008,33(5):485-488.
    [22]
    许家林,朱卫兵,王晓振.基于关键层位置的导水裂隙带高度预计方法[J].煤炭学报,2012,37(5):762.
    [23]
    许家林,王晓振,刘文涛,等.覆岩主关键层位置对导水裂隙带高度的影响[J].岩石力学与工程学报,2009,28(2):380-385.
    [24]
    王晓振,许家林,朱卫兵.主关键层结构稳定性对导水裂隙演化的影响研究[J].煤炭学报,2012,37(4):606-612.
    [25]
    Ma Liqiang, Jin Zhiyuan, Liang Jimeng.Simulation of water resource loss in short-distance coal seams disturbed by repeated mining[J]. Environmental Earth Sciences, 2015, 74(7): 5653-5662.
    [26]
    Ma Liqiang, Cao Xinqi, Liu Quan. Simulation study on water preserved mining in multi-excavation disturbed zone in close-distance seams [J]. Environmental Engineering and Management Journal, 2013, 12(9):1849.
    [27]
    马雄德,范立民,张晓团,等.基于植被地下水关系的保水采煤研究[J].煤炭学报,2017,42(5):1277.
    [28]
    马雄德,范立民,严戈,等.植被对矿区地下水位变化响应研究[J].煤炭学报,2017,42(1):44-49.
    [29]
    黄庆享,张文忠.浅埋煤层条带充填保水开采岩层控制[M].北京: 科学出版社,2014.
    [30]
    范立民,马雄德,冀瑞君.西部生态脆弱矿区保水采煤研究与实践进展[J].煤炭学报,2015,40(8):1711-1717.
    [31]
    王双明,黄庆享,范立民,等.生态脆弱区煤炭开发与生态水位保护[M].北京:科学出版社,2010.
    [32]
    王双明,范立民,马雄德.生态脆弱区煤炭开发与生态水位保护[C]//2010 年全国采矿科学技术高峰论坛论文集.哈尔滨:中国金属学会采矿分会,2010: 212-216.
    [33]
    王双明,黄庆享,范立民,等.生态脆弱矿区含( 隔) 水层特征及保水开采分区研究[J].煤炭学报,2010, 35(1):7-14.
    [34]
    马雄德,范立民,张晓团,等.榆神府矿区水体湿地演化驱动力分析[J].煤炭学报,2015,40(5):1126.
    [35]
    王磊,张鲜妮,郭广礼,等.固体密实充填开采地表沉陷预计模型研究[J].岩土力学,2014,35(7): 1973.
    [36]
    Zhang Jixiong, Zhang Qiang, Sun Qiang, et al.Surface subsidence control theory and application to backfill coal mining technology[J]. Environmental Earth Sciences, 2015, 74(2): 1439-1448.
    [37]
    缪协兴,黄艳利,巨峰,等.密实充填采煤的岩层移动理论研究[J].中国矿业大学学报,2012,41(6):863.
    [38]
    吴晓刚,刘康,葛帅帅,等.固体充填材料压实特性及应用[J].煤矿安全,2016,47(8):41-44.
    [39]
    刘鹏亮,张华兴,崔锋,等.风积砂似膏体机械化充填保水采煤技术与实践[J].煤炭学报,2017,42(1):118-126.
    [40]
    刘鹏亮,孙凯华.风积砂似膏体充填站优化设计与实践[J].煤矿开采,2016,21(6):65-67.
    [41]
    蒋泽泉.充填保水采煤技术在榆神矿区的应用效果[C]//陕西省煤炭学会.煤矿绿色高效开采技术研究——陕西省煤炭学会学术年会论文集(2016).西安:陕西省煤炭学会,2016:4.
    [42]
    邵小平,石平五,王怀贤.陕北中小煤矿条带保水开采煤柱稳定性研究[J].煤炭技术,2009,28(12):8.
    [43]
    马立强,张东升,乔京利,等.浅埋煤层采动覆岩导水通道分布特征试验研究[J].辽宁工程技术大学学报(自然科学版),2008,27(5):649-652.
    [44]
    范立民,蒋泽泉.烧变岩地下水的形成及保水采煤新思路[J].煤炭工程,2006(4):40-41.
    [45]
    顾大钊.煤矿地下水库理论框架和技术体系[J].煤炭学报,2015,40(2):239-246.
    [46]
    鞠金峰,许家林,朱卫兵.西部缺水矿区地下水库保水的库容研究[J].煤炭学报,2017,42(2):381-387.
  • Related Articles

    [1]JI Zhaoyang, CHEN Xiujie, FENG Qian, ZHANG Yiran, MIAO Dejun. Experimental research and application of high pressure spray cooling in long distance coal mining face[J]. Safety in Coal Mines, 2024, 55(10): 72-81. DOI: 10.13347/j.cnki.mkaq.20231466
    [2]ZHANG Jian, CAI Maolin, ZHANG Pengyan, XU Bo, JI Dege. Cold water interception cooling technology for surrounding rock of heat-damaged mine[J]. Safety in Coal Mines, 2023, 54(3): 1-8.
    [3]WANG Chunyao, ZHOU Jian, JIAN Junchang, ZHENG Xingbo, LUO Wei. Ventilation refrigeration and cooling technology of high temperature heat damaged mine[J]. Safety in Coal Mines, 2022, 53(9): 244-250.
    [4]LUO Tienan. Optical refraction detection method for emulsion concentration[J]. Safety in Coal Mines, 2021, 52(3): 156-158,164.
    [5]LI Wenfu, SONG Zhanhong, ZHANG Hongwei, WU Fengliang. Moving Refrigeration and Cooling Technology for Coal Mining Face at the First Level Heat Damage Area[J]. Safety in Coal Mines, 2020, 51(5): 93-97.
    [6]XIN Song, ZHANG Long, ZHANG Qi. Optimum Selection of Cooling Way for Long Distance and Large Width Coal Mining Face[J]. Safety in Coal Mines, 2018, 49(4): 173-176.
    [7]YAN Le, CHEN Donghong, KONG Lingjie, CHOU Xiujian. Wireless and Passive Vibration Monitoring System for Mine Emulsion Pump[J]. Safety in Coal Mines, 2016, 47(4): 139-142.
    [8]LUO Wei, SONG Xuanmin, LIU Cheng. Heat Damage Control Technology in More Than 1 000 m Deep Mine[J]. Safety in Coal Mines, 2014, 45(8): 88-91.
    [9]HE Fu-lian, YANG Bo-da, YANG Hong-zeng, XIE Sheng-rong, WANG Bo, DUAN Qi-tao. Ultrasound Microseism Recognition Principle and Detection Practice of Leak Failures for Powered Support in Fully Mechanized Caving Face[J]. Safety in Coal Mines, 2012, 43(6): 129-131,136.
    [10]SHI Li-ping, HAN Li, LIU Jing-jing, LI Ning. The Design of Mine-used Emulsion Pump Intelligent Control System[J]. Safety in Coal Mines, 2012, 43(6): 72-73.

Catalog

    Article views (198) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return