• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
XU Feng. Research on Original Stress Distribution of Floor Aquifuge Based on Anelastic Strain Recovery Method[J]. Safety in Coal Mines, 2018, 49(7): 34-38.
Citation: XU Feng. Research on Original Stress Distribution of Floor Aquifuge Based on Anelastic Strain Recovery Method[J]. Safety in Coal Mines, 2018, 49(7): 34-38.

Research on Original Stress Distribution of Floor Aquifuge Based on Anelastic Strain Recovery Method

More Information
  • Published Date: July 19, 2018
  • According to the requirements of ground stress test in the research of aquifuge on the coalmine water hazard control field, this paper introduced anelastic strain recovery method(ASR)which is maturely used in the field of petroleum exploration and development. Ground stress is measured by core-drilling through this method, and its principle, testing process, samples sampling and the main stress and directions calculation were described in detail. The example showed that: the crustal stress state of 11# coal floor in Baode Coal Mine is normal fault stress environment, the maximum principal stress is between 5.3 MPa and 7.9 MPa, the minimum principal stress is between 4.7 MPa to 7.3 MPa, the horizontal maximum principal stress direction is between NE46.9 ° to NE69.5 °.
  • [1]
    韩晓玉,明静,艾凯.常用地应力测试技术评价[J].长江科学院学报,2010,27(12):36-41.
    [2]
    经纬,薛维培,荣传新,等.套筒致裂单孔三维地应力测试法的原理与应用[J].煤炭学报,2016,41(6):1416-1421.
    [3]
    贾金河,邢长海.地应力测试数据高可靠性处理系统研究[J].煤炭科学技术,2015,43(1):41-44.
    [4]
    韩军,梁冰,张宏伟,等.开滦矿区煤岩动力灾害的构造应力环境[J].煤炭学报,2013,38(7):1154-1160.
    [5]
    蔡美峰.地应力测量原理和技术[M].北京:科学出版社,2000.
    [6]
    王连捷,孙东生,张利容,等.地应力测量在岩石与CO2突出灾害研究中的应用[J].煤炭学报,2009,34(1):28-32.
    [7]
    郝军,李磊.余吾煤业南翼采区地应力实测分析[J].华北科技学院学报,2017,14(1):56-60.
    [8]
    王建新,高成玉,郭放良,等.尼泊尔上塔马克西水电站三维地应力测试分析[J].岩石力学与工程学报,2012,31(S1):3339-3344.
    [9]
    李传森,赵建忠,王磊. 水压致裂法在煤层巷道底鼓控制中的可行性[J].煤矿安全,2014,45(12):179.
    [10]
    孙振明,李梅,侯慧坤,等.煤矿采区巷道支护透明化系统设计研究[J].煤炭科学技术,2016,44(2):153.
    [11]
    MATSUKI K, TAKEUCHI K. Three-dimensional in-situ stress determination by anelasticstrain recovery of a rock core[J]. Int. Rock Mech. Min. Sci. Geomech, 1993(30): 1019-1022.
    [12]
    林为人.基于岩心非弹性应变恢复量测定的深孔三维地应力测试方法[J].岩石力学与工程学报,2008, 27(12):2387-2394.
    [13]
    孙东生.非弹性应变恢复原地应力测量方法的实验研究及应用[D].北京:中国地质科学院,2014.
    [14]
    马秀敏,彭华,白金朋,等.岩石非弹性应变恢复(ASR)地应力测试方法中柔度研究进展评述[J].地质力学学报,2017,23(4):526-530.
    [15]
    丁文龙,樊太亮,黄晓波,等.塔里木盆地塔中地区上奥陶统古构造应力场模拟与裂缝分布预测[J].地质通报,2011,30(4):588-594.
  • Related Articles

    [1]WANG Yanhui, DANG Chongzhe. Discrete element study on influence of heterogeneous structure on strength and failure characteristics of coal rock combination[J]. Safety in Coal Mines, 2023, 54(3): 147-152.
    [2]GUO Yan. Failure mechanism and fracture development law of heterogeneous brittle rock[J]. Safety in Coal Mines, 2022, 53(5): 67-72,80.
    [3]Evolution characteristics of cracks and strain energy during progressive failure of coal and rock masses around the hole[J]. Safety in Coal Mines, 2022, 53(3): 16-23.
    [4]WANG Huifeng, SONG Libing. Study on Deformation and Failure Laws of Surrounding Rock in Layered Rock Roadway by Discrete Element Method[J]. Safety in Coal Mines, 2020, 51(12): 56-62.
    [5]HE Tao, WANG Li. Research on Damage Evolution Laws of Rock-coal-rock Combination Based on Particle Discrete Element Model[J]. Safety in Coal Mines, 2018, 49(7): 205-208.
    [6]ZHENG Wei. Calculation of Floor Mining Failure Depth and Failure Characteristics Analysis of Inclined Coal Seam[J]. Safety in Coal Mines, 2017, 48(10): 195-198.
    [7]JI Guoqing, LI Yingming. Torsion Failure of Glass Fiber Reinforced Plastic Bolt in Coal Rock Mass[J]. Safety in Coal Mines, 2016, 47(7): 227-229,233.
    [8]LI Xiaolu. Numerical Simulation Research on Impact Failure Characteristics for Unloading Coal Rock Mass[J]. Safety in Coal Mines, 2015, 46(6): 43-45.
    [9]WANG Luyu, ZANG Chuanwei, WANG Zeqin, CHEN jie. A Critical Depth Calculation Model and Instability Mechanism Analysis for Roadway[J]. Safety in Coal Mines, 2015, 46(5): 220-222,226.
    [10]GU Shuancheng, WANG Enbo, SHI Xiangdong. Spandrel Failure Mechanism Analysis of Arched Roadway in Layered Rock Mass[J]. Safety in Coal Mines, 2014, 45(11): 172-175,179.
  • Cited by

    Periodical cited type(12)

    1. 韩金明,郭世豪,杨磊. 套筒交替压裂作用下岩石力学特性模拟研究. 山东煤炭科技. 2024(04): 140-145 .
    2. 康晓峰. 特厚坚硬煤层深浅交替钻孔水力压裂弱化顶煤技术研究. 煤炭工程. 2023(03): 19-24 .
    3. 许晋斌. 坚硬顶板水力压裂超前切顶护巷技术应用研究. 煤炭技术. 2023(07): 50-56 .
    4. 陈冬冬. 采动影响下邻空定向钻孔整体水力压裂瓦斯抽采技术. 煤矿安全. 2023(07): 123-129 . 本站查看
    5. 曹军,赵明,高龙. 布尔台煤矿坚硬顶板定向长钻孔水力压裂研究. 中国煤炭. 2023(S2): 164-170 .
    6. 牛同会. 分段水力压裂弱化采场坚硬顶板围岩控制技术研究. 煤炭科学技术. 2022(08): 50-59 .
    7. 冯世鼎. 佳峰煤矿坚硬顶板劣化卸压技术研究. 煤. 2021(06): 89-91 .
    8. 范常胜. 佳峰煤矿隅角顶板强制放顶技术研究. 山东煤炭科技. 2021(07): 64-66 .
    9. 高亮,张农,吕情绪. 顶板定向钻孔水压致裂工作面强矿压控制试验研究. 煤炭科学技术. 2020(08): 57-62 .
    10. 马伟. 煤矿井下工作面坚硬顶板弱化技术研究. 江西煤炭科技. 2020(04): 32-35 .
    11. 王文斌. 定向水力致裂技术在坚硬顶板弱化控制中的应用. 山东煤炭科技. 2020(11): 168-170 .
    12. 柳建琦. 大高采工作面坚硬顶板水压致裂数值模拟标准研究. 中国石油和化工标准与质量. 2019(16): 8-9 .

    Other cited types(5)

Catalog

    Article views (187) PDF downloads (0) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return