• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
CHI Shenshen, WANG Lei, LI Nan, WEI Tao, HAN Wenquan. Research on Optimal Combination Model of Mining Subsidence Considering Data Freshness Function Knothe and Its Application[J]. Safety in Coal Mines, 2018, 49(5): 230-234.
Citation: CHI Shenshen, WANG Lei, LI Nan, WEI Tao, HAN Wenquan. Research on Optimal Combination Model of Mining Subsidence Considering Data Freshness Function Knothe and Its Application[J]. Safety in Coal Mines, 2018, 49(5): 230-234.

Research on Optimal Combination Model of Mining Subsidence Considering Data Freshness Function Knothe and Its Application

More Information
  • Published Date: May 19, 2018
  • In view of the poor adaptability of the traditional combination forecasting model to the dynamic prediction of mining subsidence, and the solution of combination weight does not take into account the influence of the freshness of the measured data and the low efficiency of the solution. Through the method of measurement analysis and theoretical modeling, the combination of data freshness prediction model is studied. The main conclusions are as follows: according to the principle of good stability, high prediction precision and good complementarity, the combined model selected GM (1, 1), cubic exponential smoothing model and AR model as a single model. Introducing the freshness function Knothe, based on the minimum square error criterion, the optimal combination prediction model for mining subsidence is constructed for the first time considering the data freshness function Knothe. The genetic algorithm-nonlinear programming algorithm is used to obtain the weight of combined forecasting model. Experiments show that the freshness of optimal combinative forecasting model has obvious advantages in accuracy and reliability than the observation value of the freshness of the optimal combinative forecasting model which did not take into account, the combined model based on the variance reciprocal method, equal weight combined forecast model and the single prediction model.
  • [1]
    余学义,党天虎,潘宏宇,等. 采动地表动态沉陷的流变特性[J].西安科技大学学报,2003,23(2):131.
    [2]
    朱晓峻.带状充填开采岩层移动机理研究[D].徐州:中国矿业大学,2016.
    [3]
    王军保,刘新荣,刘小军.开采沉陷动态预测模型[J].煤炭学报,2015,40(3):516-521.
    [4]
    王正帅,邓喀中.老采空区残余沉降的离散灰色预测模型[J].煤炭学报,2010,35(7):1084-1088.
    [5]
    周大伟.煤矿开采沉陷中岩土体的协同机理及预测[D].徐州:中国矿业大学,2014.
    [6]
    吕挑,王磊,李楠.多源异构变形预测模型融合方法在开采沉陷动态预测中的应用[J].煤矿安全,2017,48(4):140-143,147.
    [7]
    王正帅.老采空区残余沉降非线性预测理论及应用研究[D].徐州:中国矿业大学,2011.
    [8]
    范洪冬,邓喀中,谭志祥,等.开采沉陷动态参数预计的三次指数平滑法[J].河南理工大学学报(自然科学版),2006(3):196-199.
    [9]
    李怀展,查剑锋,米丽倩.基于卡尔曼滤波的D-InSAR和水准监测数据融合方法研究[J].大地测量与地球动力学,2015,35(3):472-476.
    [10]
    张文志,邹友峰,任筱芳.Logistic模型在开采沉陷单点预测中的研究[J].采矿与安全工程学报,2009,26(4):486-489.
    [11]
    王正帅,邓喀中.废弃采空区残余沉降时序预测模型的对比研究[J].金属矿山,2010(4):44-46,77.
    [12]
    陈华友.组合预测方法有效性理论及其应用[M].北京:科学出版社,2008.
    [13]
    曹文贵,印鹏,贺敏,等.基于数据新旧程度和预测取值区间调整的沉降组合预测方法[J].岩土力学,2017,38(2):534-540.
    [14]
    刘文霞,龙日尚,徐晓波,等.考虑数据新鲜度和交叉熵的电动汽车短期充电负荷预测模型[J].电力系统自动化,2016,40(12):45-52.
    [15]
    殷春武.组合预测中新旧历史数据对组合权重影响仿真分析[J].科学技术与工程,2012,12(27):6960.
    [16]
    崔希民,缪协兴,赵英利,等.论地表移动过程的时间函数[J].煤炭学报,1999(5):453-456.
    [17]
    曹凯,陈国虎,江桦,等.自适应引导进化遗传算法[J].电子与信息学报,2014,36(8):1884-1890.
    [18]
    戴彧虹,刘新为.线性与非线性规划算法与理论[J].运筹学学报,2014,18(1):69-92.
    [19]
    李培现.深部开采地表沉陷规律及预测方法研究[D].徐州:中国矿业大学,2012.
  • Related Articles

    [1]Research on inversion of mining subsidence prediction parameters based on improved SPSO algorithm[J]. Safety in Coal Mines, 2022, 53(8): 218-224.
    [2]CHEN Xingda, YU Xuexiang, CHI Shenshen, WANG Tao, CHEN Weiwei. Parameters Inversion of Probability Integral Method Based on Multi-population Genetic Algorithm[J]. Safety in Coal Mines, 2020, 51(11): 50-54,60.
    [3]ZHANG Bing, CUI Ximin, ZHAO Yuling, HE Junliang. Research on Triangulation Algorithm for Subsidence Prediction in Irregular Mining Working Face[J]. Safety in Coal Mines, 2018, 49(9): 280-283,288.
    [4]CHEN Yuanfei, WANG Lei, ZHA Jianfeng. Prediction and Analysis of Mine Mining Subsidence[J]. Safety in Coal Mines, 2017, 48(1): 99-102,106.
    [5]LIU Weitao, XIE Xiangxiang, LIU Huan, ZHAO Huijuan. Analysis of Multi-seam Mining Subsidence Dynamic Prediction[J]. Safety in Coal Mines, 2016, 47(10): 228-230,234.
    [6]WU Chenghong, ZHA Jianfeng. Coal Mine Mining Subsidence Prediction Based on Parameter Adaptive Differential Evolution Algorithm[J]. Safety in Coal Mines, 2015, 46(5): 71-73,77.
    [7]LI Wei, HU Haifeng, LI Junfang. Impact of Mountain Microrelief on Mining Subsidence Law[J]. Safety in Coal Mines, 2014, 45(10): 211-213,217.
    [8]WANG Suying, ZHANG Zhe, ZHAO Yuepin. Mine Subsided Prediction Model Based on SVM Combined With Fruit Fly Optimization Algorithm[J]. Safety in Coal Mines, 2014, 45(5): 43-46.
    [9]XU Dong. The Widely Adapted Mining Subsidence Prediction Software[J]. Safety in Coal Mines, 2013, 44(10): 114-116.
    [10]LI Dong-yin, REN Yao, JIANG Min. The Application of MSDFVS System in Mining Subsidence Prediction[J]. Safety in Coal Mines, 2012, 43(7): 113-115.
  • Cited by

    Periodical cited type(2)

    1. 李猛,李得建,唐谷修,张波,兰君,王成林. 结构带难采矿体上山掘进与浅孔留矿回采方法研究及应用. 中国有色金属. 2024(S2): 265-267 .
    2. 孔庆军,路庆彬,吴建宾,王强,拓龙龙. 大采高综放工作面停采撤架期间防灭火技术. 矿业安全与环保. 2020(05): 71-76 .

    Other cited types(0)

Catalog

    Article views (241) PDF downloads (0) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return