• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
WU Quanlin, FANG Qiu. Study on Distribution of Elastic Energy Under High Hard and Thick Key Strata Mining[J]. Safety in Coal Mines, 2018, 49(3): 65-67,71.
Citation: WU Quanlin, FANG Qiu. Study on Distribution of Elastic Energy Under High Hard and Thick Key Strata Mining[J]. Safety in Coal Mines, 2018, 49(3): 65-67,71.

Study on Distribution of Elastic Energy Under High Hard and Thick Key Strata Mining

More Information
  • Published Date: March 19, 2018
  • Under the mining of high hard and thick key strata, the elastic properties are abnormal. The numerical simulation method is used to study the distribution characteristics of elastic properties under the condition of hard and thick layer. The study shows that the hard and thick strata of working face in the process of mining, in front of the coal wall and the bottom of the hard and thick strata of coal and rock in front of the coal wall is in the state of high energy, which is prone to high energy micro-seismic events; in thick and hard rock breaking process, large amounts of energy is released caused by coal rock mass energy increasing suddenly in the dynamic disturbance caused by coal rock under the action of strong vibration, which easily induced mine earthquake, rock burst, pressing frame, coal and gas outburst and water separation and other major disasters. With the increase of the thickness of the hard and thick strata, the energy concentration in front of the coal wall before and after the breaken is decreased gradually, and the energy concentration range of coal and rock mass at the bottom of the hard coal seam is increased. The results of this study can be used for the prediction and prevention of dynamic disasters in the mining of high hard and thick strata.
  • [1]
    钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2000.
    [2]
    吴士良,刘思利,佟金婉,等.综采采场顶板结构模型及“支架-围岩”关系研究[J].山东科技大学学报(自然科学版),2016,35(4):44-51.
    [3]
    蒋金泉,代进,王普,等.上覆硬厚岩层破断运动及断顶控制[J].岩土力学,2014,35(增刊1):264-270.
    [4]
    徐学锋,窦林名,曹安业,等.覆岩结构对冲击矿压的影响及其微震监测[J].采矿与安全工程学报,2011,28(1):11-15.
    [5]
    杨培举,何烨,郭卫彬.采场上覆巨厚坚硬岩浆岩致灾机理与防控措施[J].煤炭学报,2013,38(12):2106.
    [6]
    胡大冲,张保良,沈宝堂,等.大采高工作面区段煤柱宽度量化研究[J].山东科技大学学报(自然科学版), 2017,36(3):32-37.
    [7]
    刘晓明,赵同彬,王明强,等.固体充填工作面支架工作特性及顶板控制分析[J].山东科技大学学报(自然科学版),2017,36(2):42-47.
  • Related Articles

    [1]XUE Yanping. Numerical Simulation on Influence of Different Ventilation Modes on Smoke Spread[J]. Safety in Coal Mines, 2020, 51(11): 201-205.
    [2]WANG Zhen, REN Gaofeng, ZHANG Congrui, ZHANG Jianfeng. Dynamic Response Characteristics of Shock Air Wave Disaster in Gob Failure Process[J]. Safety in Coal Mines, 2019, 50(6): 45-49.
    [3]HUANG Min, LIU Xiumin, JIA Min. Numerical Simulation of Underground Coal Gasification Process Based on Computational Fluid Dynamics[J]. Safety in Coal Mines, 2018, 49(7): 142-146.
    [4]WANG Chuangye, XUE Ruixiong, WANG Hongqi. Numerical Simulation of Mining Different Structural Coal Seam in Overlying Rock[J]. Safety in Coal Mines, 2016, 47(2): 184-187.
    [5]REN Zhongping, WANG Chunqiu, JIANG Bangyou, SHEN Tengfei, XIAO Zhimin. Numerical Simulation on Influence of Coal Seam Thickness Variation on Rock Burst Danger[J]. Safety in Coal Mines, 2014, 45(12): 51-53,57.
    [6]LI Xian-zhong, LIN Bai-quan, YANG Wei, NI Guan-hua, LI Quan-gui. High-low-blasting Technology Based on Multi-parameters Cooperative in Gas Dynamic Disaster Prevention[J]. Safety in Coal Mines, 2013, 44(4): 84-87.
    [7]HOU Li-bin, ZHAI Ying-da, HAN Wei. Numerical Simulation Study on Mining Subsidence Laws in Licun Mine[J]. Safety in Coal Mines, 2013, 44(4): 58-61.
    [8]JIANG Xiu-lei, MENG Jie, CHEN Yan-ke, LIU Xian-zheng. Numerical Simulation Study on the Scope of Hydraulic Fracturing Effect[J]. Safety in Coal Mines, 2013, 44(2): 3-6.
    [9]SONG Hong-jun, LAI Li-xue. Numerical Simulation of Overburden Failure Laws by Coal Seam Mining Under Goaf[J]. Safety in Coal Mines, 2013, 44(1): 35-38.
    [10]MA Shao-jie. Numerical Simulation Study on Overlying Strata Failure of Coal Mining[J]. Safety in Coal Mines, 2012, 43(12): 54-56.
  • Cited by

    Periodical cited type(14)

    1. 夏利玲,孙翠玲,张慧,黄春香. 基于CAN和REST物联网技术的智能矿山安全检测系统研发. 金属矿山. 2024(03): 215-220 .
    2. 戚建刚. 智慧应急法制模式之初探. 当代法学. 2024(03): 43-54 .
    3. 于永政,陈虹燕,张宝林,王浩. 矿山安全“再监督”监管平台设计与应用研究. 工业安全与环保. 2024(07): 79-82+89 .
    4. 范海波. 基于卫星遥感及GIS空天地一体化智慧矿山技术研究及应用. 世界有色金属. 2024(12): 55-57 .
    5. 王竑达,司书国,王淼,张博文,于倩倩. 矿山安全风险智能监测预警系统研究. 邮电设计技术. 2024(11): 25-30 .
    6. 成连华,张璇,郭慧敏,曹东强. 智能化背景下矿工风险感知水平对不安全行为产生的影响. 西安科技大学学报. 2024(06): 1041-1049 .
    7. 蔡强. 矿井环境智能化安全监测技术的研究现状. 内蒙古煤炭经济. 2023(01): 106-108 .
    8. 任艳. 煤矿智能监控系统在生产中的应用探究. 内蒙古煤炭经济. 2023(01): 172-174 .
    9. 毛乾宇. 基于卫星遥感及GIS空天地一体化智慧矿山技术研究及应用. 煤炭科技. 2023(03): 172-176 .
    10. 任志成,时宝,胡继峰,伦嘉云. 煤矿安全管理智能化建设及发展研究. 中国煤炭. 2023(07): 61-66 .
    11. 李雄锋,李刚,张枝伟,肖铸. 贵州煤矿“电子封条”智能监管平台建设与应用研究. 内蒙古煤炭经济. 2023(10): 115-117 .
    12. 任志成,孔德中,宋高峰,许鹏飞,李淋. 基于GRA和AHP的煤矿一般事故防控研究. 矿业研究与开发. 2023(12): 131-137 .
    13. 王国法,富佳兴,孟令宇. 煤矿智能化创新团队建设与关键技术研发进展. 工矿自动化. 2022(12): 1-15 .
    14. 于世勇. 煤矿用空压机智能群控节能控制系统的应用研究. 内蒙古煤炭经济. 2022(21): 21-23 .

    Other cited types(6)

Catalog

    Article views (186) PDF downloads (0) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return