Citation: | LI Yunfei, TANG Yibo, WANG Junfeng, WANG Yongyu. Study on Oxidation and Spontaneous Combustion Properties of Coking Coal After Long-term Water Immersion[J]. Safety in Coal Mines, 2017, 48(10): 35-38. |
[1] |
王德明.矿井火灾学[M].徐州:中国矿业大学出版社,2007.
|
[2] |
Tang Yibo. The influences of manganese and phosphorus on the low-temperature oxidation of coal[J]. International Journal of Coal Preparation and Utilization,2015, 32(2): 63-72.
|
[3] |
邓军,徐精彩,陈晓坤.煤自燃机理及预测理论研究进展[J].辽宁工程技术大学学报,2003(4):455-459.
|
[4] |
汪月伟.近距离煤层同采采空区自然发火防治技术研究[D].北京:中国矿业大学(北京),2015.
|
[5] |
Jianglong Yu, Arash Tahmasebi, Yanna Han. A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization[J]. Fuel Processing Technology, 2013, 16(2): 9-20.
|
[6] |
徐长富.水浸煤自燃宏观特征及防治技术研究[D].北京:中国矿业大学(北京),2015.
|
[7] |
Kathy E, Benfel B, Rodgers K A. Thermogravimetric analytical procedures for characterizing New Zealand and eastern Australian coals [J].Thermochimica Acta, 1996, 286(16): 67-74.
|
[8] |
Saurabh B, Pradeep K. The effect of moisture condensation on the spontaneous combustibility of coal [J]. Fuel, 1996,75(13):1523-1532.
|
[9] |
徐精彩.煤自燃危险区域判定理论[M].北京:煤炭工业出版社,2001.
|
[10] |
刘利.干燥脱水工艺对煤低温氧化活化能影响的研究[J].煤炭工程,2010(6):79-83.
|
[11] |
姬建虎,谢强燕.煤自燃内在影响因素分析[J].矿业安全与环保,2008(3):24-27.
|
[12] |
M H Reich, I K Snook, H K Wagenfeld. A fractal interp retation of the effect of drying on the pore structure of Victorian brown coal [J]. Fuel, 1992,71(6): 669-672.
|
[13] |
Tang Yibo, Xue Sheng, Influence of long-term water immersion on spontaneous combustion characteristics of Bulianta bituminous coal,Int. [J]. Oil, Gas and Coal Technology,2017, 28(1):37-45.
|
[14] |
牛光勇.近距离煤层上层采空区自燃火灾综合治理技术应用研究[D].太原:太原理工大学,2013.
|
[15] |
李鑫.浸水风干煤体自燃氧化特性参数实验研究[D].徐州:中国矿业大学,2014.
|
[16] |
张国枢,谢应明,顾建明.煤炭自燃微观结构变化的红外光谱分析[J].煤炭学报,2003(5):473-476.
|
[17] |
陈允魁.红外吸收光谱法及其应用[M].上海:上海交通大学出版社,1993.
|
[18] |
张嬿妮.煤氧化自燃微观特征及其宏观表征研究[D].西安:西安科技大学,2012.
|
[1] | FENG Xingwu, WANG Shusen, YU Xiaoyan, CHANG Libo, ZHANG Kun. Influence of Effective Stress on Anisotropy of High-rank Coalbed Methane Reservoir[J]. Safety in Coal Mines, 2020, 51(2): 15-19. |
[2] | ZHANG Wei, XU Hualong, YIN Dafa. Key Technology of 3D Visualization for Coal and Coalbed Methane Coordination Mining[J]. Safety in Coal Mines, 2018, 49(4): 96-98,102. |
[3] | LI Yuan, ZHOU Wei, LIU Kun. Application of Air-cavitation Technology in Rock Crosscut Coal Uncovering Well[J]. Safety in Coal Mines, 2015, 46(12): 123-125,129. |
[4] | XUE Jingyu, LIU Gaofeng, SONG Zhimin. Reverse Outburst Elimination Technology for Uncovering Coal in Mine Shaft[J]. Safety in Coal Mines, 2015, 46(4): 128-129,133. |
[5] | PANG Xuewen, LIU Zhongyi, ZHANG Baofa, WANG Di, LIU Mingju. Rapid Uncovering Coal Seam Technology by Bidirectional Partition Elimination Outburst[J]. Safety in Coal Mines, 2014, 45(9): 58-60,64. |
[6] | CHEN Qunzhong. Supporting Technology of Uncovering Coal in Deep Developing Roadway[J]. Safety in Coal Mines, 2014, 45(4): 84-87. |
[7] | GAO Ruiyuan, JIANG Chenglin, MENG Jingjing. Investigation of Particle Flow Simulation During Uncovering Coal Seam in Cross-cut[J]. Safety in Coal Mines, 2014, 45(1): 147-150. |
[8] | YANG Dong. Slow-release Coal Uncovering in Cross-Cut New Technology by Expanding Agent[J]. Safety in Coal Mines, 2013, 44(8): 58-60. |
[9] | HAN Ying, CAO Wen-tao, ZHANG Fei-yan. Gas Disaster Governance Model of Rock Cross-Cut Coal Uncovered in Gently Inclined Outburst Coal Seam[J]. Safety in Coal Mines, 2012, 43(10): 128-130. |
[10] | OU Jian-Chun, CHEN Yong-Chao. Discussion on A New Rock Cross-cut Coal Uncovering Technology[J]. Safety in Coal Mines, 2012, 43(3): 138-141. |