• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
WANG Wenqiang, YANG Xiaobin, LIU Wei, GUO Dandan, HE Chao. Particle Size Effect of Thermal Conductivity and Diffusivity of Loose Coal[J]. Safety in Coal Mines, 2017, 48(3): 28-31.
Citation: WANG Wenqiang, YANG Xiaobin, LIU Wei, GUO Dandan, HE Chao. Particle Size Effect of Thermal Conductivity and Diffusivity of Loose Coal[J]. Safety in Coal Mines, 2017, 48(3): 28-31.

Particle Size Effect of Thermal Conductivity and Diffusivity of Loose Coal

More Information
  • Published Date: March 19, 2017
  • The thermal conductivity and diffusivity of loose coal can be affected by different factors, and they are important parameters to research the spontaneous combustion of coal. But for the same coal, the thermal conductivity and diffusivity are mainly related to particle size. They can be measured meanwhile through the modified transient plane source method. Through the measurement of loose coal with small particle size and mixed loose coal, the change laws were got. The results show that, with the increasing of particle size, thermal conductivity decreases gradually; thermal diffusivity decreases first and then increases. When the weighted size of loose coal is the same, the thermal conductivity and diffusivity of mixed loose coal are affected by loose coal with smaller particle size.
  • [1]
    李建伟,葛岭梅,徐精彩,等.松散煤体导热系数测定实验[J].辽宁工程技术大学学报,2004(1):5-8.
    [2]
    何刚,张国枢,陈清华.热线法测松散煤体变导热系数[J].煤矿安全,2007,38(6):19-21.
    [3]
    陈清华,张国枢,梁华珍,等.松散煤体导热系数测定系统设计[J].煤炭科学技术,2007(4):74-76.
    [4]
    孙越,李增华,高思源,等.瞬态径向热流法测定松散煤体变导热系数[J].中国安全生产科学技术,2012(1):42-46.
    [5]
    岳宁芳.松散煤体导热系数的分析[J].矿业安全与环保,2006,33(3):26-27.
    [6]
    陈清华,张国枢,秦汝祥,等.热线法同时测松散煤体导热系数及热扩散率[J].中国矿业大学学报,2009(3):336-340.
    [7]
    肖红俊,于帆,张欣欣.瞬态平面热源法测量材料导热系数[J].北京科技大学学报,2012(12):1432-1436.
    [8]
    陈昭栋.平面热源法瞬态测量材料热物性的研究[J].电子科技大学学报,2004(5):551-554.
    [9]
    张春,题正义,李宗翔.复合粒径松散煤体自燃过程的试验研究[J].安全与环境学报,2014(3):44-48.
  • Related Articles

    [1]LIANG Qinghua, DING Xiangjun, LIU Guangliang, LIU Zhicheng, WANG Chunyuan, ZHANG Huan. Research on the development height of water-conducting fracture zone in overburden rock based on transient electromagnetic method in hole[J]. Safety in Coal Mines, 2025, 56(1): 180-187. DOI: 10.13347/j.cnki.mkaq.20231364
    [2]CUI Jianting, SONG Guilei, BAI Wu, GONG Xufei, YU Fenghai, BAI Xiaojun, LI Guangzhu, MA Ding. Optimization of transient electromagnetic method for detection of water accumulation in coal mine goaf[J]. Safety in Coal Mines, 2024, 55(9): 189-196. DOI: 10.13347/j.cnki.mkaq.20231841
    [3]WU Zhang, ZHANG Kai, LI Xiongwei, YAO Weihua, ZHANG Zhenzhen, LIU Xiugang. Exploring coal seam wind oxidation zone based on transient electromagnetic method[J]. Safety in Coal Mines, 2024, 55(5): 188-194. DOI: 10.13347/j.cnki.mkaq.20231896
    [4]XIAO Dan, CHE Yuheng. Coal Pillar Floor Stress Distribution Laws Based on Half-plane Body Theory[J]. Safety in Coal Mines, 2018, 49(2): 214-218.
    [5]Transient Energy Suppression in Design of Intrinsic Safe Power Source[J]. Safety in Coal Mines, 2017, 48(8): 63-64,68.
    [6]WANG Gongda. Numerical Method for Gas Diffusion of Coal Particles[J]. Safety in Coal Mines, 2017, 48(7): 177-180.
    [7]XU Mingying. Application of Capacitance Method in Coal Mine Water Outburst Source Detection[J]. Safety in Coal Mines, 2014, 45(5): 122-124,128.
    [8]LI Fu, LIAO Guo-zhong, LIU Xin-ming. Application of Mine Transient Electromagnetic Method in Coal Mine Collapse Area Detection[J]. Safety in Coal Mines, 2013, 44(4): 155-158.
    [9]GAO Xiao-wei. The Application of Transient Electromagnetic Method in Detecting Water Abundance of Working Face Roof[J]. Safety in Coal Mines, 2013, 44(2): 138-141.
    [10]YANG Zhen-hua, ZHANG Fei. Application of Transient Electromagnetic Method in Detecting Water Yield Property of Roof[J]. Safety in Coal Mines, 2012, 43(5): 94-97.
  • Cited by

    Periodical cited type(9)

    1. 张周爱,李新鹏,缪卫峰,周志伟,史广诚. 雨水作用下缓倾角岩层露天煤矿凸边坡变形机理研究. 中国矿业. 2024(S1): 128-136+142 .
    2. 陈德付. 基于流固耦合的露天矿易滑区边坡稳定性分析. 露天采矿技术. 2024(04): 74-78 .
    3. 吴奇靖,赵永茂. 降雨作用下含软弱带斜坡稳定性研究. 福建建材. 2024(08): 74-77 .
    4. 朱振. 基于FLAC某边坡失稳数值模拟分析. 陕西水利. 2023(02): 21-22+27 .
    5. 罗科,高瑜,张斌. 煤层自燃对高陡露天矿边坡稳定性的影响与防治对策. 煤矿安全. 2022(01): 191-197 . 本站查看
    6. 朱涛,尹翔,王成汤,闵弘,王浩,陈娱,何俊霖. 西昌太和矿北采场滑坡变形演化规律及成因机制研究. 岩土力学. 2022(S2): 392-400+413 .
    7. 孙世国,高晨,冯少杰,邓王倩. 水厂铁矿河西渣土场雨季滑移变形规律研究. 矿业研究与开发. 2022(12): 50-55 .
    8. 吴榕真,舒应秋,李志强,关云泽. 基于水影响作用下的露天煤矿边坡稳定性研究. 露天采矿技术. 2021(03): 26-29 .
    9. 田光,韩流,舒继森,杨日. 孔隙水压力重分布对排土场边坡稳定性影响规律研究. 煤矿安全. 2021(08): 239-242+247 . 本站查看

    Other cited types(3)

Catalog

    Article views (169) PDF downloads (0) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return