• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
XU Dongliang, WU Renlun, WANG Jilin, MENG Lang, ZHANG Yong′an, SUN Xiaoqi, QIAN Yingjie. Test and Application of Coal Seepage Characteristics Under the Condition of Mining[J]. Safety in Coal Mines, 2017, 48(1): 5-8.
Citation: XU Dongliang, WU Renlun, WANG Jilin, MENG Lang, ZHANG Yong′an, SUN Xiaoqi, QIAN Yingjie. Test and Application of Coal Seepage Characteristics Under the Condition of Mining[J]. Safety in Coal Mines, 2017, 48(1): 5-8.

Test and Application of Coal Seepage Characteristics Under the Condition of Mining

More Information
  • Published Date: January 19, 2017
  • In order to accurately judge the effective extraction region of mining-induced pressure relief and extraction in high gas and low air permeability coal seam, and improve gas extraction effect, seepage test and theoretical analysis are adopted to study the impact of stress on coal permeability during mining process. The results show that, the process of coal permeability changing can be divided into three stages with the stress changing caused by mining. In elastic deformation stage, coal permeability will decrease with the increase of stress; when coal body reaches the yield point to coal damage stage, plastic deformation appears and mining-induced fractures form in coal with the increase of stress, coal permeability begins to increase slowly; coal is in pressure relief state after it is destroyed, coal permeability will increase drastically with the decrease of stress. Finally, the accuracy of study results is verified by the coal seam gas extraction effect.
  • [1]
    Jiachen Wang,Renlun Wu,Peng Zhang.Characteristics and applications of gas desorption with excavation disturbances in coal mining[J].International Journal of Coal Science & Technology,2015(1):30-37.
    [2]
    程远平,俞启香,袁亮,等.煤与远程卸压瓦斯安全高效共采试验研究[J].中国矿业大学学报,2004,33(2):132-136.
    [3]
    叶建平,史保生,张春才.中国煤储层渗透性及其主要影响因素[J].煤炭学报,1999,24(2):118-122.
    [4]
    彭成.我国煤矿瓦斯抽采与利用的现状及问题[J].中国煤炭,2007,33(2):60-62.
    [5]
    黄盛初,朱超,刘馨,等.中国煤矿区煤层气开发产业化前景[C]//2001年煤矿区煤层气项目投资与技术国际研讨会论文集.徐州:中国矿业大学出版社,2001.
    [6]
    周世宁,鲜学福,朱旺喜.煤矿瓦斯灾害防治理论战略研讨[M].徐州:中国矿业大学出版社,2001.
    [7]
    吴仁伦.关键层对煤层群开采瓦斯卸压运移“三带”范围的影响[J].煤炭学报,2013,38(6):924-929.
    [8]
    何吉春.突出煤层大采高工作面瓦斯综合治理技术[J].煤矿安全,2006,37(9):33-35.
    [9]
    尚群,杨战伟,靳建伟.预抽煤层瓦斯交叉钻孔合理孔间距的研究[J].煤炭科学技术,2009,37(9):48-50.
    [10]
    李晓红,卢义玉,赵瑜,等.高压脉冲水射流提高松软煤层透气性的研究[J].煤炭学报,2008,33(12):1386-1390.
    [11]
    沈春明,林柏泉,吴海进.高压水射流割缝及其对煤体透气性的影响[J].煤炭学报,2011,36(12):2058-2063.
    [12]
    张建国,林柏泉,翟成.穿层钻孔高压旋转水射流割缝增透防突技术研究与应用[J].采矿与安全工程学报,2012,29(3):411-415.
    [13]
    翟成,李贤忠,李全贵.煤层脉动水力压裂卸压增透技术研究与应用[J].煤炭学报,2011,36(12):1996-2001.
    [14]
    林柏泉,李子文,翟成,等.高压脉动水力压裂卸压增透技术及应用[J].采矿与安全工程学报,2011,28(3):452-455.
    [15]
    蔡峰,刘泽功.深部低透气性煤层上向穿层水力压裂强化增透技术[J].煤炭学报,2016,41(1):113.
    [16]
    娄亚北,冯利民,刘健,等.穿层深孔爆破在突出坚硬煤层瓦斯抽采中的应用[J].煤炭科学技术,2015,43(12):66-71.
    [17]
    赵宝友,王海东.深孔爆破技术在高地应力低透气性高瓦斯煤层增透防突中的适用性[J].爆炸与冲击,2014,34(2):145-152.
    [18]
    曾范永,李成全,孙可明,等.气爆对煤体渗透性影响的实验研究[J].煤田地质与勘探,2012,40(2):35.
    [19]
    赵宝友,王海东.我国低透气性本煤层增透技术现状及气爆增透防突新技术[J].爆破,2014,31(3):32.
    [20]
    俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [21]
    许家林,钱鸣高,金宏伟.基于岩层移动的“煤与煤层气共采”技术研究[J].煤炭学报,2004,29(2):129.
    [22]
    俞启香,程远平,蒋承林,等.高瓦斯特厚煤层煤与卸压瓦斯共采原理及实践[J].中国矿业大学学报,2004,33(2):127-131.
    [23]
    许江,彭守建,尹光志,等.含瓦斯煤热流固耦合三轴伺服渗流装置的研制及应用[J].岩石力学与工程学报,2010,29(5):907-914.
    [24]
    赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [25]
    钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010.
    [26]
    吴仁伦,许家林,秦伟,等.新大地煤矿本煤层瓦斯超前卸压抽采试验研究[J].中国煤炭,2010,36(4):83-85.
  • Related Articles

    [1]WANG Xin, LI Wenpu, SHAO He, ZHENG Yiyi, GAO Yurong, CHEN Xi. Mathematical model for droplet size prediction of gas-water nozzle based on orthogonal experiment[J]. Safety in Coal Mines, 2025, 56(1): 72-78. DOI: 10.13347/j.cnki.mkaq.20231556
    [2]XUE Honglai, MIN Zheng, WEN Zhe. Study on mathematical relationship of classical diffusion models of coal containing methane[J]. Safety in Coal Mines, 2024, 55(10): 1-8. DOI: 10.13347/j.cnki.mkaq.20231096
    [3]JI Chaohui. Research progress of coalbed gas migration model in China[J]. Safety in Coal Mines, 2024, 55(6): 8-18. DOI: 10.13347/j.cnki.mkaq.20231900
    [4]WANG Lei, LYU Yahui, WANG Cong. Mathematical Model of Desorption Curve and Desorption Gas Content Test Method for Low-rank Coal Samples[J]. Safety in Coal Mines, 2020, 51(7): 12-16.
    [5]ZENG Jianqiang, HUA Bin, TAN Zhenglin. Adaptability Evaluation of Mathematical Model of Capillary Pressure for High-rank Coalbed Methane[J]. Safety in Coal Mines, 2019, 50(9): 17-20.
    [6]XUE Honglai, GUAN Cheng, FU Shuai, DONG Lihui, WANG Feiyin. Theoretical Model of Early Diffusion in Coal Particles Containing Methane and Its Analytical Solution[J]. Safety in Coal Mines, 2018, 49(3): 164-167.
    [7]JIA Xingwang, WANG Enyuan. Coal Burst Tendency Classification Based on Attribute Mathematical Model[J]. Safety in Coal Mines, 2014, 45(4): 156-158,162.
    [8]HE Yong-sheng. The Mathematical Model Establishment of Coal Gas Diffusion Initial Speed △p [J]. Safety in Coal Mines, 2012, 43(8): 14-17.
    [9]FAN Hai-dong, CAI Cheng-gong, WANG Yao, WANG Tian-tai. Establishment of Mathematical Model about Drilling Gas Inrush Initial Rate[J]. Safety in Coal Mines, 2012, 43(2): 112-115.
    [10]YANG Rong, ZHANG Ren-wei, LI Ying-hua, SHI Jian-li. Application of Mathematical Models for CO Emission Prediction[J]. Safety in Coal Mines, 2012, 43(1): 89-92.
  • Cited by

    Periodical cited type(2)

    1. 胡宝岭,李伟,王磊,王彦恒. 晶闸管串级调速的矿井通风自动化监控技术研究. 自动化技术与应用. 2025(03): 146-150 .
    2. 贾进章,尚文天,雷涛,李欣垚. 矿井智能通风发展趋势. 辽宁工程技术大学学报(自然科学版). 2024(05): 545-555 .

    Other cited types(0)

Catalog

    Article views (271) PDF downloads (0) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return