• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZHAO Ruxing. Classification of Roadway Surrounding Rock Stability Based on Random Forest[J]. Safety in Coal Mines, 2014, 45(11): 200-202,206.
Citation: ZHAO Ruxing. Classification of Roadway Surrounding Rock Stability Based on Random Forest[J]. Safety in Coal Mines, 2014, 45(11): 200-202,206.

Classification of Roadway Surrounding Rock Stability Based on Random Forest

More Information
  • Published Date: November 19, 2014
  • In the article, rock strength, depth, fracture development, width of roadway, thickness ratio of immediate roof and coal seam, thickness of the loosen zone are selected as sample variables based on roadway stability influencing factors. Through related-data of 35 roadways collected in some coal mines, roadway stability classification model is established by random forest, and the prediction result is compared with the decision tree, BP neural networks and support vector machines model. The results show that random forest model can relatively and effectively determine the stability of roadway with low false rate and high prediction accuracy.
  • [1]
    刘玉堂.我国缓倾斜、倾斜煤层回采巷道围岩稳定性分类的研究[J].煤炭学报,1989,14(3):21-36.
    [2]
    杨双锁.煤矿回采巷道围岩控制理论探讨[J].煤炭学报,2010,35(11):1842-1853.
    [3]
    李洪,蒋金泉,张开智.回采巷道围岩分类的模糊聚类分析方法[J].西安科技大学学报,2005,25(1):12.
    [4]
    朱一丁,马文涛.回采巷道围岩分类的支持向量机方法[J].采矿与安全工程学报,2006,23(3):362-365.
    [5]
    贺超峰,华心祝,马菁花,等.基于BP神经网络的回采巷道围岩稳定性分类[J].矿业工程研究,2012,27(3):6-9.
    [6]
    李彦斌,杨永康,苏学贵.埋深对巷道围岩稳定性影响研究[J].太原理工大学学报,2011,42(6):603-606.
    [7]
    王鲁明,赵坚,万德连.巷道裂隙围岩稳定性影响因素的数值分析[J].岩土力学,2005,26(10):44-48.
    [8]
    马建宏,韦四江,李小军.直接顶厚度对回采巷道稳定性影响的数值模拟研究[J].河南理工大学学报:自然科学版,2007,26(6):647-651.
    [9]
    靖洪文,付国彬,郭志宏.深井巷道围岩松动圈影响因素实测分析及控制技术研究[J].岩石力学与工程学报,1999,18(1):70-74.
    [10]
    方匡南,吴见彬,朱建平,等.随机森林方法研究综述[J].统计与信息论坛,2011,26(3):32-38.
    [11]
    张华伟,王明文,甘丽新.基于随机森林的文本分类模型研究[J].山东大学学报:理学版,2006,41(3):139-143.
    [12]
    郭颖婕,刘晓燕,郭茂祖,等.植物抗性基因识别中的随机森林分类方法[J].计算机科学与探索,2012,6(1):67-77.
    [13]
    张建,武东英,刘慧生.基于随机森林的流量分类方法[J].信息工程大学学报,2012,15(5):621-625.
    [14]
    董陇军,李夕兵,彭康.岩爆等级预测的随机森林模型及应用[J].中国有色金属学报:英文版,2013,23(2):472-477.
    [15]
    林成德,彭国兰.随机森林在企业信用评估指标体系确定中的应用[J].厦门大学学报:自然科学版,2007,46(2):199-203.
  • Related Articles

    [1]ZHAO Xun, LI Shaoquan, LI Shuqing, CAO Zuoyong, XIANG Long, DUAN Zhengpeng, HE Xin. Problems of Coal and Gas Outburst Identification and Regional Prediction in Guizhou Province[J]. Safety in Coal Mines, 2019, 50(3): 167-171,176.
    [2]LIU Yang. Prediction Model of Surrounding Rock Stability of Roadway and Its Maturity Tolerance[J]. Safety in Coal Mines, 2018, 49(8): 203-205,209.
    [3]WANG Dongsheng, JIN Xiao. Prediction of Surrounding Rock Stability in Coal Roadway Based on JADE-ELM Method[J]. Safety in Coal Mines, 2017, 48(11): 198-201.
    [4]YUAN Ying, WANG Chenhui, ZHOU Aihong. Prediction Model for Stability Classification of Roadway Surrounding Rock Based on Grid Search Method and Support Vector Machine[J]. Safety in Coal Mines, 2017, 48(6): 200-203.
    [5]XIN Pengfei, PENG Suping, WANG Pan, SUN Yingchuan. Simulative Density Inversion Method for Qualitative and Quantitative Forecasting of Coal Bed Methane[J]. Safety in Coal Mines, 2017, 48(3): 156-159.
    [6]HAN Yibo. Gas Emission Prediction Based on GA-ELM[J]. Safety in Coal Mines, 2015, 46(4): 166-169.
    [7]CAO Qingkui, WANG Rui. Prediction of Slope Stability in Open-pit Mine Based on GA-LSSVR[J]. Safety in Coal Mines, 2014, 45(2): 200-203.
    [8]WANG Ming, WANG Jian-Jun. Gas Emission Prediction Model of Stope Based on Random Forests[J]. Safety in Coal Mines, 2012, 43(8): 182-185.
    [9]QI Li-xia, YANG Xue. Differentiate and Simulation of Accident-causing Mechanism in Mining Production[J]. Safety in Coal Mines, 2012, 43(3): 190-192.
    [10]Sun-Yue-ming, NIU Shuang-hui. Prediction of Strong Mining-induced Earthquake Based on GM(1, 1) Model[J]. Safety in Coal Mines, 2012, 43(3): 177-179,183.

Catalog

    Article views (517) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return