• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZHANG Peisen, YANG Jian, WANG Minghui, WANG Hao. Experimental Research on Fault Activation and Water Inrush Induced by Mining Under Solid-liquid Coupling Mode[J]. Safety in Coal Mines, 2014, 45(3): 24-27.
Citation: ZHANG Peisen, YANG Jian, WANG Minghui, WANG Hao. Experimental Research on Fault Activation and Water Inrush Induced by Mining Under Solid-liquid Coupling Mode[J]. Safety in Coal Mines, 2014, 45(3): 24-27.

Experimental Research on Fault Activation and Water Inrush Induced by Mining Under Solid-liquid Coupling Mode

More Information
  • Published Date: March 19, 2014
  • According to the geological conditions of F16 fault of Wugou Coalmine, it used the simulation test of similar materials, on the basis of solid-liquid two-phase similarity, to study plastic damage law of the coal pillar and the fault activation water inrush law of roof, floor and working face ahead when approaching fault mining. The results showed that the higher concentration stress formed in the roof and floor of coal pillar because of the barrier effect of fault zone. The water inrush risk was greater in the larger permeability of bottom strata rock. For the same width of coal pillar, the greater water pressure of aquifer was, the greater water inrush risk was.
  • [1]
    刘洋,伍永平,王永胜.断层上盘防水煤柱合理宽度研究[J].西安科技大学学报,2010,30(5):523-530.
    [2]
    黄存捍,冯涛,王卫军,等.断层影响下底板隔水层的破坏机理研究[J].采矿与安全工程学报,2010,27(2):219-222.
    [3]
    崔芳鹏,武强,胡瑞林,等.断层防水煤(岩)柱安全宽度的计算与评价[J].辽宁工程技术大学学报:自然科学版,2009,28(4):517-520.
    [4]
    李常文,柳峥,郭好新,等.基于采动和承压水作用下断层突水关键路径的力学分析[J].煤炭工程,2011(5):70-73.
    [5]
    卜万奎,茅献彪.断层倾角对断层活化及底板突水的影响研究[J].岩石力学与工程学报,2009,28(2):386-394.
    [6]
    王耀.大断层附近煤层开采的防水煤柱留设离散元分析[D].合肥:合肥工业大学,2010.
    [7]
    李凯,茅献彪,陈龙,等.采动对承压底板断层活化及突水危险性的影响分析[J].力学季刊,2011,32(2):261-268.
    [8]
    卜万奎.采场底板断层活化及突水力学机理研究[D].徐州:中国矿业大学,2009.
    [9]
    吴基文,童宏树,童世杰,等.断层带岩体采动效应的相似材料模拟研究[J].岩石力学与工程学报,2007,26(S2):4170-4176.
  • Related Articles

    [1]WANG Li, ZHANG Shihao, LI Lei, LI Guangli, ZHANG Qian. Development and application of miner safety rejection sensitivity scale[J]. Safety in Coal Mines, 2022, 53(4): 243-247.
    [2]MA Xiongwei, WANG Zhaofeng, YANG Tenglong, CHEN Jinsheng, LI Yanfei, XI Jie. Sensitivity analysis of main control factors for efficiency of submerged jet crushing coal containing gas[J]. Safety in Coal Mines, 2021, 52(11): 147-153.
    [3]GAO Jianan, WU Fengliang. Calculation and sensitivity analysis of convective heat transfer coefficient between roadway wall and airflow[J]. Safety in Coal Mines, 2021, 52(9): 211-217.
    [4]ZHANG Yaqi, PENG Wenqing. Sensitivity Analysis of Influence of Many Factors on Coal Permeability Under Non-isostatic Deviating Stress[J]. Safety in Coal Mines, 2020, 51(9): 16-19.
    [5]HOU Jifeng, LIU Hao. Sensitivity Study on Main Controlling Factors of Borehole Shrinkage for Expansive Mudstone in Coal Mine[J]. Safety in Coal Mines, 2018, 49(6): 20-23.
    [6]QIAO Kang. Sensitivity Analysis of Low Rank Coal Reservoir and Its Influence on Coalbed Methane Drainage[J]. Safety in Coal Mines, 2018, 49(5): 14-16,22.
    [7]LI Ke, ZHANG Jinhong. Sensitivity Analysis on Main Factors of Inclined Coal Floor Damage Depth[J]. Safety in Coal Mines, 2017, 48(5): 210-213.
    [8]AN Zhaofeng, LI Shugang, LIN Haifei, DING Yang, LI Li. Orthogonal Experiment on Sensitivity of Impact Factors in Coal Adsorbing Methane[J]. Safety in Coal Mines, 2015, 46(2): 1-4.
    [9]ZHANG Peng, DU Ze-sheng, LI Zhong-hui, MA Yan-kun, XUE Shi-peng, WEI Li-na. Sensitivity Analysis of Outburst Hazard Evaluation Index Based on Principal Component Analysis[J]. Safety in Coal Mines, 2012, 43(4): 1-4.
    [10]CHOU Hai-sheng. Sensitivity Analysis of Effect Inspection Index for Working Face Outburst Prevention[J]. Safety in Coal Mines, 2012, 43(1): 83-85.
  • Cited by

    Periodical cited type(9)

    1. 吴晓春. 精确人员定位感应一体化识别卡的设计与实现. 化工自动化及仪表. 2025(02): 259-263+268 .
    2. 胡亮. 基于电力载波通信的精确定位读卡器设计. 化工自动化及仪表. 2025(02): 283-288 .
    3. 戴剑波. 基于国产芯片的矿车车皮精确定位标识卡. 煤矿安全. 2024(11): 222-226 . 本站查看
    4. 温贤培. 煤矿现场人员二维精确定位方法. 煤矿安全. 2023(01): 225-229 . 本站查看
    5. 樊启祥,林鹏,谢亮,刘元达,朱强,李果,辜斌,魏鹏程. 水电工程复杂场景施工资源定位管理技术研究. 水力发电学报. 2022(02): 113-124 .
    6. 陈杰. 智慧矿山安全防控多系统井下融合与应急联动技术研究. 煤矿安全. 2022(05): 99-105 . 本站查看
    7. 王恒晓. 基于多源数据融合的煤矿安全态势感知分析平台研究. 煤矿安全. 2022(08): 242-246 . 本站查看
    8. 张鹏,周代勇. 基于UWB的洗煤厂定位方法研究. 自动化与仪器仪表. 2022(08): 130-132+137 .
    9. 白怡明,曾祥玉,李杰,辛凤阳,郭晓松,朱金龙. 基于卡尔曼滤波算法的UWB+IMU组合精确定位系统在选煤厂中的应用. 选煤技术. 2022(05): 85-90 .

    Other cited types(0)

Catalog

    Article views (590) PDF downloads (0) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return