• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
SHAN Yongquan, GAO Dengyan, CHEN Jianhua. Technology and application of staged fracturing weakening and relieving danger in hard roof[J]. Safety in Coal Mines, 2025, 56(3): 177−187. DOI: 10.13347/j.cnki.mkaq.20241101
Citation: SHAN Yongquan, GAO Dengyan, CHEN Jianhua. Technology and application of staged fracturing weakening and relieving danger in hard roof[J]. Safety in Coal Mines, 2025, 56(3): 177−187. DOI: 10.13347/j.cnki.mkaq.20241101

Technology and application of staged fracturing weakening and relieving danger in hard roof

More Information
  • Received Date: July 18, 2024
  • Revised Date: November 05, 2024
  • Aiming at the difficult problem of controlling dynamic pressure disaster induced by hard roof in Buertai Coal Mine in Shendong Mining Area, the expansion equation of pressure fractures in hard rock stratum is established, and the mechanism of advanced weakening of segmented hydraulic fracturing in hard roof under strong ground pressure is revealed. The formation law of segmented hydraulic fracturing in hard roof is analyzed by using three-dimensional fracture model numerical simulation, and the arrangement of roof fracturing drilling holes in 42108 working face of Buertai Coal Mine is determined, and the engineering application is carried out in the typical working face of Buertai Coal Mine in Shendong Mining Area. The application results show that the influence range of fracturing weakening is 150-450 m away from the cutting hole along the working face, 50-280 m upward along the working face. There are 11 zonal anomalies in the spatial distribution of fracturing fractures, and the direction of fracturing fractures is mostly 36°-54°, which is nearly parallel to the direction of maximum principal stress (NE55°- NE 77°). The extension radius of fracturing fracture increases, the vertical fracture height does not change obviously, and the width of fracturing fracture decreases slightly. The larger the interval between fracturing sections is, the smaller the influence radius of fracturing cracks is, fracture radius increases from 27 m to 35 m with the maximum decrease of 2.85 m, and the fracture development radius along the drilling direction is reduced from 15.2 m to 12.8 m. After entering the fracturing stage, the maximum value and average value of the cyclic pressure decreased by about 15.3% and 9.6% respectively, the average step length of the cyclic pressure decreased by about 8.1%. The engineering practice shows that the advanced hydraulic fracturing of hard roof effectively weakens the apparent strength of ground pressure and realizes the weakening of the dynamic disaster of hard roof.

  • [1]
    牟宗龙,窦林名. 坚硬顶板突然断裂过程中的突变模型[J]. 矿山压力与顶板管理,2004,21(4):90−92.

    MU Zonglong, DOU Linming. The cusp type catastrophic model of the fracture process of hard rock roof[J]. Journal of Mining & Safety Engineering, 2004, 21(4): 90−92.
    [2]
    王金安,尚新春,刘红,等. 采空区坚硬顶板破断机理与灾变塌陷研究[J]. 煤炭学报,2008,33(8):850−855.

    WANG Jin’an, SHANG Xinchun, LIU Hong, et al. Study on fracture mechanism and catastrophic collapse of strong roof strata above the mined area[J]. Journal of China Coal Society, 2008, 33(8): 850−855.
    [3]
    朱德仁,钱鸣高,徐林生. 坚硬顶板来压控制的探讨[J]. 煤炭学报,1991,16(2):11−20.

    ZHU Deren, QIAN Minggao, XU Linsheng. Discussion on control of hard roof weighting[J]. Journl of China Coal Society, 1991, 16(2): 11−20.
    [4]
    林柏泉,李子文,翟成,等. 高压脉动水力压裂卸压增透技术及应用[J]. 采矿与安全工程学报,2011,28(3):452−455.

    LIN Baiquan, LI Ziwen, ZHAI Cheng, et al. Pressure relief and permeability-increasing technology based on high pressure pulsating hydraulic fracturing and its application[J]. Journal of Mining & Safety Engineering, 2011, 28(3): 452−455.
    [5]
    徐刚,彭苏萍,邓绪彪. 煤层气井水力压裂压力曲线分析模型及应用[J]. 中国矿业大学学报,2011,40(2):173−178.

    XU Gang, PENG Suping, DENG Xubiao. Hydraulic fracturing pressure curve analysis and its application to coalbed methane wells[J]. Journal of China University of Mining & Technology, 2011, 40(2): 173−178.
    [6]
    李安启,姜海,陈彩虹. 我国煤层气井水力压裂的实践及煤层裂缝模型选择分析[J]. 天然气工业,2004,24(5):91−94,154.

    LI Anqi, JIANG Hai, CHEN Caihong. Hydraulic fracturing practice and coal-bed fracture model selecting for coal-bed gas wells in China[J]. Natural Gas Industry, 2004, 24(5): 91−94,154.
    [7]
    康红普,冯彦军. 煤矿井下水力压裂技术及在围岩控制中的应用[J]. 煤炭科学技术,2017,45(1):1−9.

    KANG Hongpu, FENG Yanjun. Hydraulic fracturing technology and its applications in strata control in underground coal mines[J]. Coal Science and Technology, 2017, 45(1): 1−9.
    [8]
    牟宗龙,窦林名,张广文,等. 坚硬顶板型冲击矿压灾害防治研究[J]. 中国矿业大学学报,2006,35(6):737−741.

    MU Zonglong, DOU Linming, ZHANG Guangwen, et al. Study of prevention methods of rock burst disaster caused by hard rock roof[J]. Journal of China University of Mining & Technology, 2006, 35(6): 737−741.
    [9]
    徐颖,杨敬轩,傅菊根,等. 综采面坚硬顶板超深孔预裂爆破远场解危控制技术[J]. 工程爆破,2024,30(5):112−124.

    XU Ying, YANG Jingxuan, FU Jugen, et al. The danger relief technology in far field of ultra-deep hole pre-splitting blasting in hard roof of fully mechanized mining face[J]. Engineering Blasting, 2024, 30(5): 112−124.
    [10]
    黄小朋,张鹏鹏,闫耀飞. 矿井坚硬顶板定向水力压裂技术研究[J]. 中国煤炭,2017,43(7):55−57,80.

    HUANG Xiaopeng, ZHANG Pengpeng, YAN Yaofei. Research on directional hydrofracture technology in handling mine hard roof[J]. China Coal, 2017, 43(7): 55−57,80.
    [11]
    张帆,马耕,刘晓,等. 煤岩水力压裂起裂压力和裂缝扩展机制实验研究[J]. 煤田地质与勘探,2017,45(6):84−89.

    ZHANG Fan, MA Geng, LIU Xiao, et al. Experimental study on initiation pressure and mechanism of fracture propagation of hydraulic fracturing in coal and rock mass[J]. Coal Geology & Exploration, 2017, 45(6): 84−89.
    [12]
    朱乐章,杨敬轩,王举文,等. 朱仙庄煤矿特厚煤层变间距覆岩坚硬顶板控制技术[J]. 矿业研究与开发,2024,44(4):84−90.

    ZHU Yuezhang, YANG Jingxuan, WANG Juwen, et al. Control technology for hard roof of variable spacing overburden rock in extra-thick coal seam of Zhuxianzhuang Coal Mine[J]. Mining Research and Development, 2024, 44(4): 84−90.
    [13]
    闫少宏,宁宇,康立军,等. 用水力压裂处理坚硬顶板的机理及实验研究[J]. 煤炭学报,2000,25(1):32−35.

    YAN Shaohong, NING Yu, KANG Lijun, et al. The mechanism of hydrobreakage to control hard roof and its test study[J]. Journal of China Coal Society, 2000, 25(1): 32−35.
    [14]
    BOLINTINEANU D S, RAO R R, LECHMAN J B, etal. Simulations of the effects of proppant placement on the conductivity and mechanical stability of hydraulic fractures[J]. International Journal of Rock Mechanicsand Mining Sciences, 2017, 100: 188−198.
    [15]
    黄炳香,程庆迎,刘长友,等. 煤岩体水力致裂理论及其工艺技术框架[J]. 采矿与安全工程学报,2011,28(2):167−173.

    HUANG Bingxiang, CHENG Qingying, LIU Changyou, et al. Hydraulic fracturing theory of coal-rock mass and its technical framework[J]. Journal of Mining & Safety Engineering, 2011, 28(2): 167−173.
    [16]
    邓广哲,郑锐,徐东. 大采高综采端头悬顶水力切顶控制机理[J]. 西安科技大学学报,2019,39(2):224−233.

    DENG Guangzhe, ZHENG Rui, XU Dong. Control mechanism of hydraulic roof cutting for end suspended roof of fully-mechanized mining face with large mining height[J]. Journal of Xi’an University of Science and Technology, 2019, 39(2): 224−233.
    [17]
    邓广哲,王世斌,黄炳香. 煤岩水压裂缝扩展行为特性研究[J]. 岩石力学与工程学报,2004,23(20):3489−3493.

    DENG Guangzhe, WANG Shibin, HUANG Bingxiang. Research on behavior character of crack development induced by hydraulic fracturing in coal-rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(20): 3489−3493.
    [18]
    杨俊哲,吕清绪,郑凯歌,等. 浅埋特厚硬煤层过沟谷开采超前区域弱化控制技术[J]. 中国煤炭,2021,47(6):13−20.

    YANG Junzhe, LV Qingxu, ZHENG Kaige, et al. Weakening control technology in advanced region during mining through gully area in shallow buried extra-thick and hard coal seam[J]. China Coal, 2021, 47(6): 13−20.
    [19]
    杨俊哲,郑凯歌,赵继展,等. 浅埋近距离上覆遗留煤柱应力集中灾害压裂治理技术研究[J]. 矿业安全与环保,2020,47(4):82−87.

    YANG Junzhe, ZHENG Kaige, ZHAO Jizhan, et al. Research on fracturing treatment technology of concentrated stress disaster by the overlying coal pillar in close distance shallow seam[J]. Mining Safety & Environmental Protection, 2020, 47(4): 82−87.
    [20]
    杨俊哲,郑凯歌,王振荣,等. 坚硬顶板动力灾害超前弱化治理技术[J]. 煤炭学报,2020,45(10):3371−3379.

    YANG Junzhe, ZHENG Kaige, WANG Zhenrong, et al. Technology of weakening and danger-breaking dynamic disasters by hard roof[J]. Journal of China Coal Society, 2020, 45(10): 3371−3379.
    [21]
    杨俊哲,郑凯歌. 厚煤层综放开采覆岩动力灾害原理及防治技术[J]. 采矿与安全工程学报,2020,37(4):750−758.

    YANG Junzhe, ZHENG Kaige. The mechanism of overburden dynamic disasters and its control technology in top-coal caving in the mining of thick coal seams[J]. Journal of Mining & Safety Engineering, 2020, 37(4): 750−758.
    [22]
    李方立,王成,段长寿. 超前深孔预爆破处理坚硬顶板的应用[J]. 矿山压力与顶板管理,2001,18(3):72−74.

    LI Fangli, WANG Cheng, DUAN Changshou. Using advanced deep hole pre−blasting to deal with hard roof[J]. Ground Pressure and Strata Control, 2001, 18(3): 72−74.
    [23]
    冯彦军,康红普. 定向水力压裂控制煤矿坚硬难垮顶板试验[J]. 岩石力学与工程学报,2012,31(6):1148−1155.

    FENG Yanjun, KANG Hongpu. Test on hard and stable roof control by means of directional hydraulic fracturing in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1148−1155.
    [24]
    郑凯歌. 碎软低透煤层底板梳状长钻孔分段水力压裂增透技术研究[J]. 采矿与安全工程学报,2020,37(2):272−281.

    ZHENG Kaige. Permeability improving technology by sectional hydraulic fracturing for comb-like long drilling in floor of crushed and soft coal seam with low permeability[J]. Journal of Mining & Safety Engineering, 2020, 37(2): 272−281.
    [25]
    陈冬冬,孙四清,张俭,等. 井下定向长钻孔水力压裂煤层增透技术体系与工程实践[J]. 煤炭科学技术,2020,48(10):84−89.

    CHEN Dongdong, SUN Siqing, ZHANG Jian, et al. Technical system and engineering practice of coal seam permeability improvement through underground directional long borehole hydraulic fracturing[J]. Coal Science and Technology, 2020, 48(10): 84−89.
    [26]
    郭超奇,赵继展,李小建,等. 中硬低渗煤层定向长钻孔水力压裂瓦斯高效抽采技术与应用[J]. 煤田地质与勘探,2020,48(6):103−108.

    GUO Chaoqi, ZHAO Jizhan, LI Xiaojian, et al. Technology and application of high efficiency gas extraction by directional long borehole hydraulic fracturing in coal seams of medium hardness and low permeability[J]. Coal Geology & Exploration, 2020, 48(6): 103−108.
    [27]
    王建利,陈冬冬,贾秉义. 韩城矿区碎软煤层顶板梳状孔水力压裂瓦斯抽采工程实践[J]. 煤田地质与勘探,2018,46(4):17−21.

    WANG Jianli, CHEN Dongdong, JIA Bingyi. Practice of gas drainage by hydraulic fracturing of roof pectination boreholes in broken soft coal seam in Hancheng mining area[J]. Coal Geology & Exploration, 2018, 46(4): 17−21.
    [28]
    程建远,聂爱兰,张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探,2016,44(6):136−141.

    CHENG Jianyuan, NIE Ailan, ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration, 2016, 44(6): 136−141.

Catalog

    Article views (11) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return