GUO Changna. Research on transient energy suppression strategy of intrinsically safe output power supply for mine[J]. Safety in Coal Mines, 2025, 56(1): 188−194. DOI: 10.13347/j.cnki.mkaq.20240888
    Citation: GUO Changna. Research on transient energy suppression strategy of intrinsically safe output power supply for mine[J]. Safety in Coal Mines, 2025, 56(1): 188−194. DOI: 10.13347/j.cnki.mkaq.20240888

    Research on transient energy suppression strategy of intrinsically safe output power supply for mine

    More Information
    • Received Date: June 13, 2024
    • Revised Date: July 14, 2024
    • In response to the requirements of GB/T 3836.4—2021 Explosive atmosphere Part 4: Equipment with protection by intrinsic safetyi” for outputting transient energy of intrinsically safe power sources based on the principle of semiconductor rapid short circuit protection, taking typical mining “ib” class explosion-proof and intrinsically safe power supplies and intrinsically safe battery power supplies as research objects, the study clarifies the transient energy testing device and transient energy calculation method. According to the experimental verification and comparison, the reasons for the failure of the transient energy experiment of the output intrinsically safe power supply are analyzed, and it is verified that the protection time, the reaction speed of semiconductor chip, the short-circuit instantaneous voltage and current value in the over-voltage and over-current protection circuit are the key parameters affecting the transient energy; based on the actual design, the protection process is analyzed, the method of reducing transient energy by TVS tube is excluded, and the influence of inductor on transient energy before and after the power supply overvoltage and over-current protection circuit is studied, which provides a reference for the design of the output intrinsically safe power supply for mining.

    • [1]
      GB/T 3836.4—2021 爆炸性环境用电气设备 第4部分:由本质安全型“i”保护的设备[S].
      [2]
      张岩. 本安电源设计中的瞬态能量抑制[J]. 煤矿安全,2017,48(8):63−68.

      ZHANG Yan. Transient energy suppression in design of intrinsic safe power sourse[J]. Safety in Coal Mines, 2017, 48(8): 63−68.
      [3]
      董建国,李艳民,周兴东,等. 本安电源降低火花能量的几个措施[J]. 煤矿安全,2020,51(3):97−99.

      DONG Jianguo, LI Yanmin, ZHOU Xingdong, et al. Several methods of reducing discharge energy for intrinsic safety power supply[J]. Safety in Coal Mines, 2020, 51(3): 97−99.
      [4]
      IEC 60079-11: 2023 Explosive atmospheres -Part 11: Equipment protection by intrinsic safety “i”[S].
      [5]
      邹德东,刘鹏. 基于容量及保护时间可调的矿用本安电源[J]. 煤矿安全,2021,52(7):103−106.

      ZOU Dedong, LIU Peng. Mine intrinsic safety power supply based on adjustable capacity and protection time[J]. Safety in Coal Mines, 2021, 52(7): 103−106.
      [6]
      张勇. IEC 火花试验装置灵敏度分析[J]. 煤矿安全,2021,52(10):111−114.

      ZHANG Yong. Sensitivity analysis of IEC spark test apparatus[J]. Safety in Coal Mines, 2021, 52(10): 111−114.
      [7]
      黄鹤松,宋帅,薛琳,等. 矿用本安型双光谱融合摄像仪设计[J]. 煤矿安全,2023,54(4):203−209.

      HUANG Hesong, SONG Shuai, XUE Lin, et al. Design of mine-used intrinsically safe dual spectral fusion camera[J]. Safety in Coal Mines, 2023, 54(4): 203−209.
      [8]
      王思宁,郭涛,车明浪. 一种矿用本安电源的设计[J]. 煤矿安全,2018,49(2):100−102.

      WANG Sining, GUO Tao, CHE Minglang. Design for a kind of intrinsically safe power supply[J]. Safety in Coal Mines, 2018, 49(2): 100−102.
      [9]
      李曼,王启亮,段雍,等. 矿用本安直流电源自动测试系统[J]. 现代电子技术,2020,43(20):135−140.

      LI Man, WANG Qiliang, DUAN Yong, et al. Mining intrinsically safe DC power supply automatic test system[J]. Modern Electronics Technique, 2020, 43(20): 135−140.
      [10]
      刘亚辉. 本安设备用电源模块的设计及实现[J]. 煤炭技术,2021,40(7):181−184.

      LIU Yahui. Design and implementation of power supply module for intrinsically safe equipment[J]. Coal Technology, 2021, 40(7): 181−184.
      [11]
      钟宁帆,冯展华,王小婧. 矿用本安型电源软开关电路的设计[J]. 煤炭技术,2018,37(1):224−226.

      ZHONG Ningfan, FENG Zhanhua, WANG Xiaojing. Design on soft switch of mining intrinsically safe power supply[J]. Coal Technology, 2018, 37(1): 224−226.
      [12]
      房绪鹏,于志学,马伯龙,等. 本安电源双重化保护电路冗余方式对比研究[J]. 煤矿安全,2017,48(6):119−122.

      FANG Xupeng, YU Zhixue, MA Bolong, et al. Redundancy modes comparison study on dual protection circuit of intrinsically safe power[J]. Safety in Coal Mines, 2017, 48(6): 119−122.
      [13]
      刘海金,靳鹤志,王金浩,等. 含高比例分布式电源的直流配电系统故障恢复过电压机理及其抑制[J]. 电测与仪表,2023,60(11):45−52.

      LIU Haijin, JIN Hezhi, WANG Jinhao, et al. Fault recovery overvoltage mechanism and its suppression in DC distribution system with high-proportion DG penetration[J]. Electrical Measurement & Instrumentation, 2023, 60(11): 45−52.
      [14]
      孟庆海,田媛. 本质安全电路模拟储能元件潜在危险性分析及其本质安全判据[J]. 电工技术学报,2022,37(3):676−685.

      MENG Qinghai, TIAN Yuan. Analysis of potential hazards of analog energy storage components in the intrinsic safety circuits and their intrinsic safety criteria[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 676−685.
      [15]
      汤伟,杨铖,刘洋,等. 串联补偿型故障电流限制器应用研究[J]. 电测与仪表,2017,54(22):88−92.

      TANG Wei, YANG Cheng, LIU Yang, et al. Application research of series compensation fault current limiter[J]. Electrical Measurement & Instrumentation, 2017, 54(22): 88−92.
      [16]
      邢超,奚鑫泽,何鑫,等. 多端直流输电系统中限流电抗器配置研究[J]. 电测与仪表,2023,60(5):72−78.

      XING Chao, XI Xinze, HE Xin, et al. Research on configuration of current limiting reactor in multi-terminal HVDC system[J]. Electrical Measurement & Instrumentation, 2023, 60(5): 72−78.
      [17]
      赵永秀,王骑,王瑶,等. 爆炸性环境电感分断放电引燃能力及本安性能评价方法[J]. 煤炭学报,2020,45(S2):867−874.

      ZHAO Yongxiu, WANG Qi, WANG Yao, et al. Criterion of intrinsically safe and ignition capability of inductor-disconnected-discharge in explosive environments[J]. Journal of China Coal Society, 2020, 45(S2): 867−874.
      [18]
      刘树林,郝雨蒙,李艳,等. 基于最大功率的本安Buck变换器设计方法[J]. 电工技术学报,2021,36(3):542−551.

      LIU Shulin, HAO Yumeng, LI Yan, et al. Design methods of intrinsically safe Buck converter based on the maximum output power[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 542−551.
      [19]
      张洋瑞,赵俊鹏,史轮,等. 考虑边缘电源接入的煤改电台区供电可靠性分析方法[J]. 电测与仪表,2023,60(7):58−62.

      ZHANG Yangrui, ZHAO Junpeng, SHI Lun, et al. Reliability analysis method of power supply in coal-to-electricity station considering the access of edge power supply[J]. Electrical Measurement & Instrumentation, 2023, 60(7): 58−62.
      [20]
      曹尚,常鲜戎,王辉云. D-STATCOM 实时同比例限流保护的研究[J]. 电测与仪表,2014,51(8):42−46. doi: 10.3969/j.issn.1001-1390.2014.08.009

      CAO Shang, CHANG Xianrong, WANG Huiyun. Research of real-time current-limiting protection with the same proportion for D-STATCOM[J]. Electrical Measurement & Instrumentation, 2014, 51(8): 42−46. doi: 10.3969/j.issn.1001-1390.2014.08.009
      [21]
      刘树林,马一博,文晓明,等. 输出本安Buck-Boost变换器的最危险输出短路放电工况研究[J]. 电工技术学报,2015,30(14):253−260. doi: 10.3969/j.issn.1000-6753.2015.14.035

      LIU Shulin, MA Yibo, WEN Xiaoming, et al. Research on the most dangerous output short-circuit discharge conditions of output intrinsic safety Buck-Boost converters[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 253−260. doi: 10.3969/j.issn.1000-6753.2015.14.035
      [22]
      陈慧丽,李杰. 矿用本安电源开关变换器滤波电容消解方案[J]. 工矿自动化,2020,46(4):109−112.

      CHEN Huili, LI Jie. Filtering capacitor resolution scheme of switching converter in mine-used intrinsic safety type power supply[J]. Industry and Mine Automation, 2020, 46(4): 109−112.
    • Related Articles

      [1]WANG Xiaokun, ZHENG Lulin, LAN Hong, XIE Hongdong, TIAN Youwen, XU Jin. Roof water inrush risk assessment based on LDA-RBF and comprehensive weighting method[J]. Safety in Coal Mines, 2024, 55(4): 187-196. DOI: 10.13347/j.cnki.mkaq.20230509
      [2]QIN Yan, SHENG Wu. Study on cause of coal and gas outburst accident based on D-S evidence theory and Bayesian network[J]. Safety in Coal Mines, 2023, 54(5): 153-160.
      [3]CHENG Lianhua, XIE Mengyue, ZUO Minhao, GUO Huimin. Risk evaluation method of coal mine gas explosion based on ISM-BN and its application[J]. Safety in Coal Mines, 2022, 53(10): 1-8.
      [4]HU Xia, ZHONG Wenjie, CHENG Jingjing. Situational evaluation model of coal mine safety based on AHP and entropy weight method[J]. Safety in Coal Mines, 2021, 52(2): 248-252.
      [5]LYU Beibei, HE Xiaosheng, GAO Feng, TAN Zhaoming, QU Guanglong. Calculation of Compressive Capacity of Concrete Filled Circular Steel Tubular Column Based on Bayes Probabilistic Model[J]. Safety in Coal Mines, 2020, 51(2): 225-230.
      [6]FANG Shisheng, TIAN Haitao, HUANG Dezhou, LIU Weinan. Study on Classification of Stability of Surrounding Rock Using Entropy Weight Method and Multi-dimensional Cloud Model[J]. Safety in Coal Mines, 2020, 51(1): 229-232.
      [7]ZHAO Yongfang, ZHANG Lingyun, YU Liya. Safety Evaluation for Rock Burst Based on Entropy-weight and Matter-element Extension Model[J]. Safety in Coal Mines, 2019, 50(6): 213-218.
      [8]BAI Wen, XIE Xionggang, DAI Wei, XU Shiqing, GUO Pengfei. Safety Evaluation for Mine Fire Based on Entropy Weight Matter Element Extension[J]. Safety in Coal Mines, 2017, 48(7): 196-199,203.
      [9]WANG Fei, YANG Xue, LI Wensheng, SONG Aifeng, TONG Fengming. Research on the Safety Evaluation of Coal Mine Based on Information Entropy and Fuzzy Neural Network[J]. Safety in Coal Mines, 2014, 45(3): 213-216.
      [10]LI Feng-jun, WANG Ke-rui, GONG Cheng-zhu. Reliability Evaluation of DC Method Based on Bayesian[J]. Safety in Coal Mines, 2012, 43(2): 158-162.
    • Cited by

      Periodical cited type(4)

      1. 唐维东,张九通,廖明亮,吴达科,蒋猛. 基于ZigBee的工厂化堆沤有机肥监控系统设计. 西南大学学报(自然科学版). 2024(05): 216-228 .
      2. 袁建文. 基于TDOA/TOF混合技术的井下人员及车辆定位. 工矿自动化. 2024(S1): 39-42 .
      3. 郝永强. 无轨胶轮车在煤矿井下辅助运输中的应用分析. 能源与节能. 2024(11): 259-261 .
      4. 韩燕南,高文,贺耀宜. 基于精确定位技术的煤矿井下小型车避让预警方法. 煤矿安全. 2024(12): 243-249 . 本站查看

      Other cited types(0)

    Catalog

      Article views (35) PDF downloads (7) Cited by(4)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return