• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZOU Yongming, WANG Yinhui, TIAN Fuchao. Research on temperature compensation of infrared CO analyzer based on GA-BP optimization model[J]. Safety in Coal Mines, 2024, 55(9): 60−70. DOI: 10.13347/j.cnki.mkaq.20240569
Citation: ZOU Yongming, WANG Yinhui, TIAN Fuchao. Research on temperature compensation of infrared CO analyzer based on GA-BP optimization model[J]. Safety in Coal Mines, 2024, 55(9): 60−70. DOI: 10.13347/j.cnki.mkaq.20240569

Research on temperature compensation of infrared CO analyzer based on GA-BP optimization model

More Information
  • Received Date: April 17, 2024
  • Revised Date: May 10, 2024
  • Spectral analysis is an important technical means for the quantitative analysis of coal mine gas. However, the portable infrared gas sensor widely used at present is greatly affected by the ambient temperature in the field test process. In order to improve the analysis accuracy and applicability of the gas analyzer, we carry out theoretical analysis and experimental research around the necessity of constant temperature heating of infrared gas analyzers, reasonable heating temperature range, and optimization model of test data error. Firstly, an experimental platform of infrared gas analyzer covering pre-temperature compensation, constant temperature heating test, post-temperature compensation and different test environment temperature conditions is constructed, and the experimental steps as well as the corresponding analytical methods are proposed; secondly, in the ambient temperature of 25-45 ℃ interval, the tested CO gas volume fraction is 800×10−6, through a lot of tests, it is found that the accuracy of CO gas analyzer is best when the heating temperature is 45 ℃, the test value is the closest to the true value of gas volume fraction. At the same time, CO (10×10−6-500×10−6) standard gas is selected for the accuracy test, and the absolute error of the calculated CO gas is only 0-9×10−6, which is better than the error range specified in the standard; then, setting the variable temperature environment of −15- 45 ℃, the temperature compensation verification of the heated CO gas sensor is carried out, the test results show that the lower the ambient temperature, the higher the volume fraction of the gas to be measured, the greater the sensor detection error, the maximum error can reach 110×10−6; based on this, the error analysis models of BP and GA-BP neural network are established, and the ambient temperature, test volume fraction and standard gas volume fraction are fused with the optimized model. It is found that MAE value obtained by GA-BP neural network model is reduced by 12.982 3×10−6 compared with BP neural network. The MSE and RMSE calculation results also verify the stability and feasibility of GA-BP model in gas analysis.

  • [1]
    WU H, ZENG X Y, HAO S R, et al. A novel biomass modified brown coal as composite fuel for high performance direct carbon solid oxide fuel cells[J]. Fuel, 2024, 363: 131051. doi: 10.1016/j.fuel.2024.131051
    [2]
    姜萌,冯文彬,高慧,等. 用于煤矿热动力灾害监测的一氧化碳传感器[J]. 煤炭学报,2021,46(S2):793−799.

    JIANG Meng, FENG Wenbin, GAO Hui, et al. Carbon monoxide sensor for coal mine thermodynamie disaster monitoring[J]. Journal of China Coal Society, 2021, 46(S2): 793−799.
    [3]
    周效志,桑树勋,谷德忠,等. 煤矿井下CO 来源辨识与浓度超限原因研究:以内蒙古串草圪旦煤矿为例[J]. 煤炭科学技术,2021,49(2):138−144.

    ZHOU Xiaozhi, SANG Shuxun, GU Dezhong, et al. Study on identify sources of CO and reasons of concentration overrun in underground coal mine: a case study of Chuancaogedan Coal Mine in Inner Mongolia[J]. Coal Science and Technology, 2021, 49(2): 138−144.
    [4]
    王铭明,汪晨,于浩,等. 不同温度下煤样氧化热解气体产物在煤中吸附特性的实验研究[J]. 煤炭学报,2020,45(S1):284−290.

    WANG Mingming, WANG Chen, YU Hao, et al. Experimental investigation on adsorption characteristics of in coal gas mixture from coal self-heated under different temperatures[J]. Journal of China Coal Society, 2020, 45(S1): 284−290.
    [5]
    田富超,贾东旭,陈明义,等. 采空区复合灾害环境下含瓦斯煤自燃特征研究进展[J]. 煤炭学报,2024,49(6):1−17.

    TIAN Fuchao, JIA Dongxu, CHEN Mingyi, et al. Research progress of spontaneous combustion of coal containing gas under the compound disaster environment in the goaf[J]. Journal of China Coal Society, 2024, 49(6): 1−17.
    [6]
    刘立仁. 浅埋深易自燃煤层工作面低氧高一氧化碳防治技术[J]. 煤矿安全,2021,52(3):106−111.

    LIU Liren. Prevention and control of low oxygen and high carbon monoxide in shallow buried depth easy spontaneous combustion coal seam working face[J]. Safety in Coal Mines, 2021, 52(3): 106−111.
    [7]
    梁运涛,田富超,冯文彬,等. 我国煤矿气体检测技术研究进展[J]. 煤炭学报,2021,46(6):1701−1714.

    LIANG Yuntao, TIAN Fuchao, FENG Wenbin, et al. Research progress of coal mine gas detection technology in China[J]. Journal of China Coal Society, 2021, 46(6): 1701−1714.
    [8]
    LIANG Y T, WANG J C, TIAN F C, et al. A novel temperature compensation approach of IR gas sensors in coal mines[J]. Fuel, 2023, 354: 129330. doi: 10.1016/j.fuel.2023.129330
    [9]
    王金成,梁运涛,田富超. TDLAS气体检测技术研究现状及其在煤矿中的应用[J]. 煤矿安全,2022,53(11):98−102.

    WANG Jincheng, LIANG Yuntao, TIAN Fuchao. Research current situation of TDLAS gas detection technology and its application in coal mine[J]. Safety in Coal Mines, 2022, 53(11): 98−102.
    [10]
    TELEZHKO V M, TYUTCHEV M V, AVERIANOVA M V, et al. Gas sensors for measuring the concentration of harmful substances: Application features[J]. Measurement Techniques, 2022, 64(10): 857−864. doi: 10.1007/s11018-022-02015-6
    [11]
    伍龙,邢丽坤. 基于非分散红外技术的煤矿井下有害气体定量探测方法研究[J]. 中国安全生产科学技术,2014,10(3):155−159.

    WU Long, XING Likun. Study on quantitative measurement method of deleterious gases in underground mine using non-dispersive infrared technology[J]. Journal of Safety Science and Technology, 2014, 10(3): 155−159.
    [12]
    TAN Q L, TANG L C, YANG M L, et al. Three-gas detection system with IR optical sensor based on NDIR technology[J]. Optics and Lasers in Engineering, 2015, 74: 103−108.
    [13]
    杜京义,殷聪,王伟峰,等. 基于TDLAS的痕量CO浓度检测系统及温压补偿[J]. 光学技术,2018,44(1):19−24.

    DU Jingyi, YIN Cong, WANG Weifeng, et al. Detection system of trace CO based on TDLAS and temperature and pressure compensation[J]. Optical Technique, 2018, 44(1): 19−24.
    [14]
    田富超. 煤矿采空区火灾气体红外光谱在线分析技术[D]. 徐州:中国矿业大学,2019.
    [15]
    石锦涛. 基于TDLAS技术的高精度有毒有害气体的浓度检测技术研究[D]. 成都:电子科技大学,2019.
    [16]
    王前进,孙鹏帅,张志荣,等. 混合气体测量中重叠吸收谱线交叉干扰的分离解析方法[J]. 物理学报,2021,70(14):227−236.

    WANG Qianjin, SUN Pengshuai, ZHANG Zhirong, et al. Separation and analysis method of overlapping absorption spectra with cross interference in gas mixture measurement[J]. Acta Physica Sinica, 2021, 70(14): 227−236.
    [17]
    梁运涛,田富超,董浩喆,等. 一种矿用NDIR气体传感器及浓度定量分析温度补偿方法:CN113252597B[P]. 2022-02-08.
    [18]
    TIAN Fuchao, LIANG Yuntao, ZHU Hongqing, et al. Application of a novel detection approach based on non-dispersive infrared theory to the in situ analysis on indicator gases from underground coal fire[J]. Journal of Central South University, 2022, 29(6): 1840−1855. doi: 10.1007/s11771-022-5006-9
    [19]
    赵晓虎,孙鹏帅,杨眷,等. 应用于煤自燃指标气体体积分数在线监测系统[J]. 煤炭学报,2021,46(S1):319−327.

    ZHAO Xiaohu, SUN Pengshuai, YANG Juan, et al. Online monitoring system of index gases concentration applied to coal spontaneous combustion[J]. Journal of China Coal Society, 2021, 46(S1): 319−327.
    [20]
    MT/T 757—2019煤矿自然发火束管监测系统通用技术条件[S].
    [21]
    郑树泉. 工业智能技术与应用[M]. 上海:上海科学技术出版社,2019.
    [22]
    王铁方. 计算机基因学:基于家族基因的网格信任模型[M]. 北京:知识产权出版社,2016.
    [23]
    赵航,岳晓峰,方博,等. 基于PSO-GA-BP神经网络的视觉伺服控制系统[J]. 吉林大学学报(信息科学版),2020,38(2):172−178. doi: 10.3969/j.issn.1671-5896.2020.02.009

    ZHAO Hang, YUE Xiaofeng, FANG Bo, et al. Visual servo control system based on PSO-GA-BP neural network[J]. Journal of Jilin University (Information Science Edition), 2020, 38(2): 172−178. doi: 10.3969/j.issn.1671-5896.2020.02.009
    [24]
    TAN B, ZHANG H Y, CHENG G, et al. Constructing a gas explosion inversion model in a straight roadway using the GA–BP neural network[J]. ACS Omega, 2021, 6(48): 32485−32494. doi: 10.1021/acsomega.1c03926
    [25]
    DENG J, CHEN W L, LIANG C, et al. Correction model for CO detection in the coal combustion loss process in mines based on GWO-SVM[J]. Journal of Loss Prevention in the Process Industries, 2021, 71: 104439. doi: 10.1016/j.jlp.2021.104439
    [26]
    DENG J, CHEN W L, WANG C P, et al. Prediction model for coal spontaneous combustion based on SA-SVM[J]. ACS Omega, 2021, 6(17): 11307−11318. doi: 10.1021/acsomega.1c00169

Catalog

    Article views (26) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return