• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
QI Jiali, LI Weiqing, HE Zhiyong, et al. Study on the influence laws of hole distribution parameters on guided groove-static expansion synergistic fracturing effect[J]. Safety in Coal Mines, 2025, 56(3): 127−136. DOI: 10.13347/j.cnki.mkaq.20240112
Citation: QI Jiali, LI Weiqing, HE Zhiyong, et al. Study on the influence laws of hole distribution parameters on guided groove-static expansion synergistic fracturing effect[J]. Safety in Coal Mines, 2025, 56(3): 127−136. DOI: 10.13347/j.cnki.mkaq.20240112

Study on the influence laws of hole distribution parameters on guided groove-static expansion synergistic fracturing effect

More Information
  • Received Date: January 25, 2024
  • Revised Date: April 08, 2024
  • Available Online: April 25, 2024
  • To further enhance the weakening capability of the roof by static expansion fracturing technology, the study explores the influence of construction parameters on the stress distribution around boreholes. Based on the principles of elasticity and fracture mechanics, the synergistic fracturing mechanism between guided groove and static expansion was revealed. Adopting the PFC2D discrete element method, a corresponding numerical model for static expansion fracturing was established and biaxial confinement and static expansion interaction simulations were conducted by setting different construction parameters. The results indicate that: compared to the conventional single-hole unconfined static expansion fracturing, the guided groove can effectively enhance the effect of static expansion fracturing, and the further the distance from the hole center, the more obvious the lifting effect; the discrete element method can effectively simulate the stress distribution during the static expansion-induced cracking process. There is a positive correlation between the static expansion force, borehole diameter, and the length of the guided groove, and the circumferential stress. Conversely, the angle of the guided groove, the stress coefficient, and the burial depth are negatively correlated with the circumferential stress; the sensitivity ranking of hole parameters is as follows: borehole diameter > groove angle > groove length. In practical applications, the aperture and slot length should be increased as much as possible and the groove angle should be reduced; the groove alters the characteristics of circumferential stress distribution; however, the guiding effect of the groove has its limitations. There exists competitive crack initiation and propagation behavior between the tip of the groove and the surrounding area of the borehole.

  • [1]
    潘俊锋,康红普,闫耀东,等. 顶板“人造解放层”防治冲击地压方法、机理及应用[J]. 煤炭学报,2023,48(2):636−648.

    PAN Junfeng, KANG Hongpu, YAN Yaodong, et al. The method, mechanism and application of preventing rock burst by artificial liberation layer of roof[J]. Journal of China Coal Society, 2023, 48(2): 636−648.
    [2]
    郑志涛,徐颖,李德生,等. 多孔线性控制套筒致裂效果影响因素分析[J]. 实验力学,2016,31(4):564−572. doi: 10.7520/1001-4888-15-150

    ZHENG Zhitao, XU Ying, LI Desheng, et al. Analysis of influencing factors of fracture effect on porous linear control sleeve[J]. Journal of Experimental Mechanics, 2016, 31(4): 564−572. doi: 10.7520/1001-4888-15-150
    [3]
    冯彦军,康红普. 定向水力压裂控制煤矿坚硬难垮顶板试验[J]. 岩石力学与工程学报,2012,31(6):1148−1155. doi: 10.3969/j.issn.1000-6915.2012.06.008

    FENG Yanjun, KANG Hongpu. Test on hard and stable roof control by means of directional hydraulic fracturing in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1148−1155. doi: 10.3969/j.issn.1000-6915.2012.06.008
    [4]
    杜建,左建平,吴根水,等. 产气具弱化坚硬顶板力学机制及损伤特征分析[J]. 岩石力学与工程学报,2023,42(9):2224−2236.

    DU Jian, ZUO Jianping, WU Genshui, et al. Analysis of mechanical mechanism and damage characteristics of new fracturing device gas producing tool weakening hard roof[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(9): 2224−2236.
    [5]
    赵志鹏,欧阳烽,何富连,等. 切顶沿空留巷双向聚能爆破关键参数研究[J]. 煤矿安全,2022,53(2):226−233.

    ZHAO Zhipeng, OUYANG Feng, HE Fulian, et al. Study on key parameters of bidirectional shaped charge blasting for gob side entry retaining with roof cutting and pressure relief[J]. Safety in Coal Mines, 2022, 53(2): 226−233.
    [6]
    牛同会. 分段水力压裂弱化采场坚硬顶板围岩控制技术研究[J]. 煤炭科学技术,2022,50(8):50−59.

    NIU Tonghui. Study on surrounding rock control technology for weakened hard roof of stope by staged hydraulic fracturing[J]. Coal Science and Technology, 2022, 50(8): 50−59.
    [7]
    李团结,牟文辉,易瑞强,等. 双孔膨胀致裂坚硬岩体裂隙扩展演化试验研究[J]. 煤矿安全,2021,52(10):70−78.

    LI Tuanjie, MOU Wenhui, YI Ruiqiang, et al. Evolution and extension of fissures in hard rocks under double-hole expansion fracturing[J]. Safety in Coal Mines, 2021, 52(10): 70−78.
    [8]
    张嘉勇,崔啸,周凤增,等. 煤层钻孔静态爆破致裂半径数值模拟[J]. 煤矿安全,2017,48(12):146−149.

    ZHANG Jiayong, CUI Xiao, ZHOU Fengzeng, et al. Numerical simulation on crack radius of coal seam drilling by static blasting[J]. Safety in Coal Mines, 2017, 48(12): 146−149.
    [9]
    谢雄刚,陈学习,刘锦伟. 静态膨胀生裂增透作用原理及影响因素研究[J]. 煤矿安全,2015,46(2):21−24.

    XIE Xionggang, CHEN Xuexi, LIU Jinwei. Research on active principle and effect factors by static expansion and crack to increase permeability[J]. Safety in Coal Mines, 2015, 46(2): 21−24.
    [10]
    王金贵,张苏. 煤岩静爆致裂微震活动规律及频谱演变特征[J]. 煤炭学报,2017,42(7):1706−1713.

    WANG Jingui, ZHANG Su. Characteristics of microseismic signals and its frequency-spectrum evolvement rule during the static cracking of coal[J]. Journal of China Coal Society, 2017, 42(7): 1706−1713.
    [11]
    ZHAI Cheng, XU Jizhao, LIU Shimin, et al. Fracturing mechanism of coal-like rock specimens under the effect of non-explosive expansion[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 145−154. doi: 10.1016/j.ijrmms.2018.01.037
    [12]
    谢益盛,杨光辉,黄小朋. 静态破碎剂膨胀力学性能试验研究[J]. 煤矿安全,2019,50(3):9−12.

    XIE Yisheng, YANG Guanghui, HUANG Xiaopeng. Experimental research on mechanical properties of static breaking agents[J]. Safety in Coal Mines, 2019, 50(3): 9−12.
    [13]
    HUANG Bingxiang, LIU Jiangwei, ZHANG Quan. The reasonable breaking location of overhanging hard roof for directional hydraulic fracturing to control strong strata behaviors of gob-side entry[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 1−11. doi: 10.1016/j.ijrmms.2018.01.013
    [14]
    唐铁吾,刘大安,崔振东,等. 煤矿顶板致裂水压力的断裂力学评估[J]. 煤炭学报,2020,45(S2):727−735.

    TANG Tiewu, LIU Daan, CUI Zhendong, et al. Initiation pressure evaluation of coal mine roof hydraulic fracturing based on fracture mechanics[J]. Journal of China Coal Society, 2020, 45(S2): 727−735.
    [15]
    康红普,冯彦军,张震,等. 煤矿井下定向钻孔水力压裂岩层控制技术及应用[J]. 煤炭科学技术,2023,51(1):31−44.

    KANG Hongpu, FENG Yanjun, ZHANG Zhen, et al. Hydraulic fracturing technology with directional boreholes for strata control in underground coal mines and its application[J]. Coal Science and Technology, 2023, 51(1): 31−44.
    [16]
    夏永学,陆闯,杨光宇,等. 坚硬顶板孔内磨砂射流轴向切缝及压裂试验研究[J]. 采矿与岩层控制工程学报,2020,2(3):56−62.

    XIA Yongxue, LU Chuang, YANG Guangyu, et al. Experimental study on axial fracture cutting and fracturing of abrasive jet in boreholes within hard rock roofs[J]. Journal of Mining and Strata Control Engineering, 2020, 2(3): 56−62.
    [17]
    许红杰. “钻−切−压”定向水力压裂顶煤弱化技术应用研究[J]. 煤炭工程,2021,53(6):73−76.

    XU Hongjie. Application of drilling-cutting-fracturing directional hydraulic fracturing technology for top-coal weakening[J]. Coal Engineering, 2021, 53(6): 73−76.
    [18]
    马召辉,耿进军. 不同导向槽对静态破碎剂弱化煤层顶板效果研究[J]. 煤炭科学技术,2020,48(S1):46−50.

    MA Zhaohui, GENG Jinjun. Study on effect of weakening coal seam roof by static cracking agent with different guide grooves[J]. Coal Science and Technology, 2020, 48(S1): 46−50.
    [19]
    张超,林柏泉,周延,等. 本煤层深孔定向静态破碎卸压增透技术研究与应用[J]. 采矿与安全工程学报,2013,30(4):600−604.

    ZHANG Chao, LIN Baiquan, ZHOU Yan. et al. Deep-hole directional static cracking technique for pressure relief and permeability improvement in mining-coal bed[J]. Journal of Mining & Safety Engineering, 2013, 30(4): 600−604.
    [20]
    叶义成,陈常钊,姚囝,等. 膨胀型浆体的膨胀材料若干问题研究进展[J]. 金属矿山,2021(1):71−93.

    YE Yicheng, CHEN Changzhao, YAO Nan, et al. Research progress on several problems of expansive materials for expansive slurry[J]. Metal Mine, 2021(1): 71−93.
    [21]
    李英杰,倪婷,左建平,等. 坚硬顶板定向水力压裂裂纹起裂机制及影响因素分析[J]. 岩石力学与工程学报,2022,41(10):2015−2029.

    LI Yingjie, NI Ting, ZUO Jianping, et al. Analysis of crack initiation mechanism and influencing factors of hard roofs due to directional hydraulic fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(10): 2015−2029.
    [22]
    胡善超,韩金明,黄俊鸿,等. 套筒压裂作用下岩石细观裂隙与能量演化规律探究[J]. 煤炭科学技术,2024,52(2):79−91. doi: 10.12438/cst.2023-1438

    HU Shanchao, HAN Jinming, HUANG Junhong, et al. Study on meso-fracture and energy evolution law of rock under sleeve fracturing[J]. Coal Science and Technology, 2024, 52(2): 79−91. doi: 10.12438/cst.2023-1438
    [23]
    谭云亮. 矿山压力与岩层控制[M]. 北京:煤炭工业出版社,2014:15−20.

Catalog

    Article views (79) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return