• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
PENG Shoujian, YANG Yan, XU Jiang, et al. Experimental study on impact failure characteristics of deep circular roadway[J]. Safety in Coal Mines, 2025, 56(1): 107−116. DOI: 10.13347/j.cnki.mkaq.20240015
Citation: PENG Shoujian, YANG Yan, XU Jiang, et al. Experimental study on impact failure characteristics of deep circular roadway[J]. Safety in Coal Mines, 2025, 56(1): 107−116. DOI: 10.13347/j.cnki.mkaq.20240015

Experimental study on impact failure characteristics of deep circular roadway

More Information
  • Received Date: January 04, 2024
  • Revised Date: January 23, 2024
  • In order to study the impact failure characteristics of deep circular roadway under the condition of disturbance load, based on the self-developed multi-functional physical simulation test system of rock burst, the impact failure test of circular roadway was carried out for large-scale rock-like materials. The impact failure process of underground 800 m roadway under mining disturbance was simulated, and the stress-strain, blasting, acoustic emission and infrared radiation response characteristics of impact failure of deep circular roadway were analyzed. The results show that the impact failure process of deep circular roadway is divided into four stages: quiet period, particle ejection period, block spalling period and comprehensive failure period. After the failure of the roadway, “V” shaped blasting pits are formed on both sides. The area of the right blasting pit is larger than that of the left, and the degree of damage is higher than that of the left. When the roadway began to produce particle ejection, it entered the initial failure stage, the acoustic emission count and energy increased slowly, the temperature of the infrared radiation temperature field was evenly distributed, and the degree of differentiation was low. With the increase of disturbance stress, the energy of acoustic emission count increases gradually, the temperature field of infrared radiation rises and forms a high temperature concentration area, and the temperature field differentiation is obvious. The acoustic emission count and energy increase suddenly near comprehensive damage, the degree of infrared radiation temperature field differentiation reaches the maximum and then decreases, and the overall temperature of the temperature field in the low temperature region increases.

  • [1]
    刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五” 发展方向[J]. 煤炭学报,2021,46(1):1−15.

    LIU Feng, CAO Wenjun, ZHANG Jianming, et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society, 2021, 46(1): 1−15.
    [2]
    汤家轩,刘具,梁跃强,等. “十四五” 时期我国煤炭工业发展思考[J]. 中国煤炭,2021,47(10):6−10.

    TANG Jiaxuan, LIU Ju, LIANG Yueqiang, et al. Thoughts on the development of China’s coal industry during the 14th Five-Year Plan period[J]. China Coal, 2021, 47(10): 6−10.
    [3]
    王旭东. 我国煤炭行业高质量发展指标体系及基本路径研究[J]. 中国煤炭,2020,46(2):22−27.

    WANG Xudong. Study on high quality development index system and basic path of coal industry in China[J]. China Coal, 2020, 46(2): 22−27.
    [4]
    谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283−1305.

    XIE Heping. Research review of the state key research development program of China: Deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283−1305.
    [5]
    谢和平,李存宝,高明忠,等. 深部原位岩石力学构想与初步探索[J]. 岩石力学与工程学报,2021,40(2):217−232.

    XIE Heping, LI Cunbao, GAO Mingzhong, et al. Conceptualization and preliminary research on deep in situ rock mechanics[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(2): 217−232.
    [6]
    何满潮. 深部的概念体系及工程评价指标[J]. 岩石力学与工程学报,2005,24(16):2854−2858.

    HE Manchao. Conception system and evaluation indexes for deep engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2854−2858.
    [7]
    何满潮. 深部软岩工程的研究进展与挑战[J]. 煤炭学报,2014,39(8):1409−1417.

    HE Manchao. Progress and challenges of soft rock engineering in depth[J]. Journal of China Coal Society, 2014, 39(8): 1409−1417.
    [8]
    钱七虎. 深部岩体工程响应的特征科学现象及“深部” 的界定[J]. 东华理工学院学报,2004,27(1):1−5.

    QIAN Qihu. The characteristic scientific phenomena of engineering response to deep rock mass and the implication of deepness[J]. Journal of East China University of Technology, 2004, 27(1): 1−5.
    [9]
    RANJITH P G, ZHAO J, JU M H, et al. Opportunities and challenges in deep mining: A brief review[J]. Engineering, 2017, 3(4): 546−551. doi: 10.1016/J.ENG.2017.04.024
    [10]
    刘焕新. 深部高应力下蚀变岩力学特性与采动破裂机理及灾害调控[D]. 北京:北京科技大学,2022.
    [11]
    贺永亮,王素萍,付玉平,等. 基于多源信息融合的冲击地压风险预警与弱结构防治技术[J]. 煤矿安全,2023,54(7):78−84.

    HE Yongliang, WANG Suping, FU Yuping, et al. Early-warning and soft structure prevention technology of rock burst risk based on multi-source information fusion[J]. Safety in Coal Mines, 2023, 54(7): 78−84.
    [12]
    赵光明,许文松,孟祥瑞,等. 扰动诱发高应力岩体开挖卸荷围岩失稳机制[J]. 煤炭学报,2020,45(3):936−948.

    ZHAO Guangming, XU Wensong, MENG Xiangrui, et al. Instability mechanism of high stress rock mass under excavation and unloading induced by disturbance[J]. Journal of China Coal Society, 2020, 45(3): 936−948.
    [13]
    谭云亮,郭伟耀,赵同彬,等. 深部巷道动静载试验系统研制及初步应用[J]. 岩石力学与工程学报,2022,41(8):1513−1524.

    TAN Yunliang, GUO Weiyao, ZHAO Tongbin, et al. Development and application of a novel deep roadway test system with dynamic-static loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(8): 1513−1524.
    [14]
    FAKHIMI A, CARVALHO F, ISHIDA T, et al. Simulation of failure around a circular opening in rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(4): 507−515. doi: 10.1016/S1365-1609(02)00041-2
    [15]
    刘冬桥,何满潮,汪承超,等. 动载诱发冲击地压的实验研究[J]. 煤炭学报,2016,41(5):1099−1105.

    LIU Dongqiao, HE Manchao, WANG Chengchao, et al. Experimental study on rock burst induced by dynamic load[J]. Journal of China Coal Society, 2016, 41(5): 1099−1105.
    [16]
    何江,窦林名,蔡武,等. 薄煤层动静组合诱发冲击地压的机制[J]. 煤炭学报,2014,39(11):2177−2182.

    HE Jiang, DOU Linming, CAI Wu, et al. Mechanism of dynamic and static combined load inducing rock burst in thin coal seam[J]. Journal of China Coal Society, 2014, 39(11): 2177−2182.
    [17]
    王正义,窦林名,何江. 动静组合加载下急倾斜特厚煤层开采煤岩冲击破坏特征研究[J]. 采矿与安全工程学报,2021,38(5):886−894.

    WANG Zhengyi, DOU Linming, HE Jiang. Failure characteristics of rock bursts in steeply-inclined extra-thick coal seams under static-dynamic coupling loading[J]. Journal of Mining & Safety Engineering, 2021, 38(5): 886−894.
    [18]
    HE J, DOU L M, GONG S Y, et al. Rock burst assessment and prediction by dynamic and static stress analysis based on micro-seismic monitoring[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 93: 46−53. doi: 10.1016/j.ijrmms.2017.01.005
    [19]
    王四巍,刘汉东,姜彤. 动静荷载联合作用下冲击地压巷道破坏机制大型地质力学模型试验研究[J]. 岩石力学与工程学报,2014,33(10):2095−2100.

    WANG Siwei, LIU Handong, JIANG Tong. Large geomechanical model test on failure mechanism of rockburst tunnel under static and explosive loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10): 2095−2100.
    [20]
    周辉,卢景景,胡善超,等. 开挖断面曲率半径对高应力下硬脆性围岩板裂化的影响[J]. 岩土力学,2016,37(1):140−146.

    ZHOU Hui, LU Jingjing, HU Shanchao, et al. Influence of curvature radius of tunnels excavation section on slabbing of hard brittle rockmass under high stress[J]. Rock and Soil Mechanics, 2016, 37(1): 140−146.
    [21]
    宫凤强,罗勇,司雪峰,等. 深部圆形隧洞板裂屈曲岩爆的模拟试验研究[J]. 岩石力学与工程学报,2017,36(7):1634−1648.

    GONG Fengqiang, LUO Yong, SI Xuefeng, et al. Experimental modelling on rockburst in deep hard rock circular tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1634−1648.
    [22]
    GONG Fengqiang, SI Xuefeng, LI Xibing, et al. Experimental investigation of strain rockburst in circular caverns under deep three-dimensional high-stress conditions[J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1459−1474. doi: 10.1007/s00603-018-1660-5
    [23]
    司雪峰,宫凤强,罗勇,等. 深部三维圆形洞室岩爆过程的模拟试验[J]. 岩土力学,2018,39(2):621−634.

    SI Xuefeng, GONG Fengqiang, LUO Yong, et al. Experimental simulation on rockburst process of deep three-dimensional circular cavern[J]. Rock and Soil Mechanics, 2018, 39(2): 621−634.
    [24]
    张艳博,杨震,姚旭龙,等. 基于红外辐射时空演化的巷道岩爆实时预警方法实验研究[J]. 采矿与安全工程学报,2018,35(2):299−307.

    ZHANG Yanbo, YANG Zhen, YAO Xulong, et al. Experimental study on real-time early warning method of tunnel rock burst based on infrared radiation spatial and temporal evolutions[J]. Journal of Mining & Safety Engineering, 2018, 35(2): 299−307.
    [25]
    张艳博,杨震,姚旭龙,等. 花岗岩巷道岩爆声发射信号及破裂特征实验研究[J]. 煤炭学报,2018,43(1):95−104.

    ZHANG Yanbo, YANG Zhen, YAO Xulong, et al. Experimental study on rockburst acoustic emission signal and fracture characteristics in granite roadway[J]. Journal of China Coal Society, 2018, 43(1): 95−104.
    [26]
    张艳博,梁鹏,刘祥鑫,等. 基于多参量归一化的花岗岩巷道岩爆预测试验研究[J]. 岩土力学,2016,37(1):96−104.

    ZHANG Yanbo, LIANG Peng, LIU Xiangxin, et al. An experimental study of predicting rockburst in granitic roadway based on multiparameter normalization[J]. Rock and Soil Mechanics, 2016, 37(1): 96−104.
    [27]
    LIU Jianpo, ZHANG Changyin SI Yingtao, et al. Temporal-spatial evolution of acoustic emission during progressive fracture processes around tunnel triggered by blast-induced disturbances under uniaxial and biaxial compression[J]. Tunnelling and Underground Space Technology, 2020, 96: 103229. doi: 10.1016/j.tust.2019.103229
    [28]
    申艳军,吕游,王双明,等. 煤矿采动作用对围岩扰动影响范围的分析[J]. 煤矿安全,2022,53(5):194−202.

    SHEN Yanjun, LYU You, WANG Shuangming, et al. Analysis of influence range of coal mining on surrounding rock disturbance[J]. Safety in Coal Mines, 2022, 53(5): 194−202.
    [29]
    周辉,陈珺,张传庆,等. 低强高脆岩爆模型材料配比试验研究[J]. 岩土力学,2019,40(6):2039−2049.

    ZHOU Hui, CHEN Jun, ZHANG Chuanqing, et al. Experimental study of the rockburst model material with low-strength and high-brittleness[J]. Rock and Soil Mechanics, 2019, 40(6): 2039−2049.
    [30]
    梁昌玉,李晓,李守定,等. 岩石静态和准动态加载应变率的界限值研究[J]. 岩石力学与工程学报,2012,31(6):1156−1161.

    LIANG Changyu, LI Xiao, LI Shouding, et al. Study of strain rates threshold value between static loading and quasi-dynamic loading of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1156−1161.
    [31]
    黄禄渊,杨树新,崔效锋,等. 华北地区实测应力特征与断层稳定性分析[J]. 岩土力学,2013,34(S1):204−213.

    HUANG Luyuan, YANG Shuxin, CUI Xiaofeng, et al. Analysis of characteristics of measured stress and stability of faults in North China[J]. Rock and Soil Mechanics, 2013, 34(S1): 204−213.
    [32]
    GB/T 25217.2—2010冲击地压测定、监测与防治方法 第2部分:煤的冲击倾向性分类及指数的测定方法 [S].
  • Related Articles

    [1]LEI Yueyu, LI Zhonghui, TIAN He, AIKEREMUJIANG·AIHEMAITI, LI Xueli, LOU Quan. Experimental study on changes of infrared radiation energy in siltstone failure process under different loading rates[J]. Safety in Coal Mines, 2024, 55(1): 151-159. DOI: 10.13347/j.cnki.mkaq.20222013
    [2]ZHANG Kun, WANG Man, REN Jianxi, ZHANG Sen. Experimental study on acoustic emission characteristics of impact tendency coal under combined dynamic and static loading[J]. Safety in Coal Mines, 2023, 54(9): 80-87. DOI: 10.13347/j.cnki.mkaq.2023.09.012
    [3]LI Hongping, LI Pengpeng, ZHANG Qiang, ZHAO Zhipeng, JIA Bingbing, HU Xucong. Experimental study on acoustic and electrical response of double shear friction sliding of coal and rock[J]. Safety in Coal Mines, 2023, 54(3): 169-176.
    [4]XIAO Yuzhe, QIU Liming, TIAN Xianghui, ZHOU Chao, LIU Yang. Study on waveform duration characteristics of acoustic and electrical signals of coal damage under load[J]. Safety in Coal Mines, 2021, 52(11): 63-68.
    [5]TIAN He, LI Zhonghui, YIN Shan, CHENG Fuqi, WEI Yang, ZHANG Xin. Study on Precursor of Infrared Temperature Critical Slowing in Coal Sample Uniaxial Compression Failure[J]. Safety in Coal Mines, 2020, 51(3): 38-43.
    [6]XU Jiankun, XI Danyang, YU Xin. Experimental Study on Response Law of Synchronous Acoustic Emission and Electromagnetic Radiation Field of Coal Uniaxial Failure[J]. Safety in Coal Mines, 2019, 50(10): 54-57.
    [7]WANG Qijiang, LI Xiaoxiao, HAN Boshi, JIA Zepeng, HU An, JIN Kaifu, WANG Jiajian. Study on Infrared Spectrum Characteristics of Coal Under Impact Damage[J]. Safety in Coal Mines, 2017, 48(9): 32-34,38.
    [8]HUANG Chun. Design of Isolating Circuit Based on Infrared Correlation Tube[J]. Safety in Coal Mines, 2016, 47(1): 100-102.
    [9]WANG Xiaoran, LIU Xiaofei, MA Dong, DENG Xiaoqian, LIU Jie. Experimental on Time Domain Characteristics of Electric Signal Emitted from Fracture of Loading Coal or Rock[J]. Safety in Coal Mines, 2014, 45(9): 35-39.
    [10]QIU Li-ming, WANG En-yuan. Acoustic Signal Characteristic of Porous Concrete Uniaxial Compression Experiment[J]. Safety in Coal Mines, 2013, 44(6): 55-58.

Catalog

    Article views (32) PDF downloads (10) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return