Citation: | LI Xiaoer, YANG Bo, ZHANG Liangliang, et al. Study on floor failure characteristics of working face passing anticlinal section based on micro-seismic monitoring[J]. Safety in Coal Mines, 2025, 56(2): 137−145. DOI: 10.13347/j.cnki.mkaq.20231898 |
In order to explore the floor failure characteristics of the passing anticline section of the working face, taking the 16091 working face of Zhaogu No.1 mine as an example, the passing anticline section and the normal mining section are divided according to the actual geological conditions of the working face and the field microseismic monitoring data, and the distribution characteristics of microseismic events of the passing anticline section and the normal mining section are compared and analyzed. The failure characteristics of the floor of the working face passing anticline section under the microseismic angle are revealed. Then the failure law of coal mining floor under anticlinal structure is revealed by similar simulation test. The results show that the anticlinal axis of B1 is a region of high energy core density when the working face passes through the anticlinal section; the failure depth of the floor in the early and late anticlinal sections of the working face is 1.12 and 1.08 times that of the normal mining section, respectively, and the failure boundary of the floor touches the interior of L8 limestone. In the process of coal mining on deep confined water body, the tectonic stress in the passing anticlinal section has a significant effect on the instability failure of floor.
[1] |
武强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795−805.
WU Qiang. Progress, problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society, 2014, 39(5): 795−805.
|
[2] |
夏玉成,孙廷臣,梁倩文,等. 韩城矿区纵弯褶皱的几何学特征及其形成演化机理[J]. 煤炭学报,2018,43(3):801−809.
XIA Yucheng, SUN Tingchen, LIANG Qianwen, et al. Geometry and geodynamic mechanism of buckle folds in Hancheng mining area[J]. Journal of China Coal Society, 2018, 43(3): 801−809.
|
[3] |
陈书平,韩煦,黄新文. 东濮凹陷古近系伸展褶皱及形成机理[J]. 大地构造与成矿学,2016,40(5):908−918.
CHEN Shuping, HAN Xu, HUANG Xinwen. Paleogene extensional folds in Dongpu sag and their folding mechanism[J]. Geotectonica et Metallogenia, 2016, 40(5): 908−918.
|
[4] |
肖洋,何宇,李富明. 穿越褶皱隧道施工地质灾害与致灾构造及其预报研究[J]. 现代隧道技术,2018,55(S2):612−618.
XIAO Yang, HE Yu, LI Fuming. Research on geological hazards and disaster-causing structures and its predictioin methods in tunnel construction through the folds[J]. Modern Tunnelling Technology, 2018, 55(S2): 612−618.
|
[5] |
陆菜平,张修峰,肖自义,等. 褶皱构造对深井采动应力演化的控制规律研究[J]. 煤炭科学技术,2020,48(2):44−50.
LU Caiping, ZHANG Xiufeng, XIAO Ziyi, et al. Study on controlling law of fold structure on evolution of mining stress in deep mines[J]. Coal Science and Technology, 2020, 48(2): 44−50.
|
[6] |
曹安业,薛成春,吴芸,等. 煤矿褶皱构造区冲击地压机理研究及防治实践[J]. 煤炭科学技术,2021,49(6):82−87.
CAO Anye, XUE Chengchun, WU Yun, et al. Study on mechanism of rock burst in fold structure area of coal mine and its prevention practice[J]. Coal Science and Technology, 2021, 49(6): 82−87.
|
[7] |
王胜本,张晓. 煤矿井下地质构造与地应力的关系[J]. 煤炭学报,2008,33(7):738−742.
WANG Shengben, ZHANG Xiao. Relation between geological structures and in-situ stresses in underground coal mines[J]. Journal of China Coal Society, 2008, 33(7): 738−742.
|
[8] |
许延春,苗葳,宛志红,等. 底板加固改造工作面“双关键层” 控水模型[J]. 煤矿安全,2023,54(5):63−71.
XU Yanchun, MIAO Wei, WAN Zhihong, et al. Model of water control “two key layers” in floor reinforcement and reconstruction working face[J]. Safety in Coal Mines, 2023, 54(5): 63−71.
|
[9] |
吴航,邱楠生,常健,等. 川东多套滑脱层褶皱构造带形成物理模拟[J]. 地球科学,2019,44(3):784−797.
WU Hang, QIU Nansheng, CHANG Jian, et al. Physical simulation on development of multilayer detachment fold belt in eastern Sichuan[J]. Earth Science, 2019, 44(3): 784−797.
|
[10] |
任仰辉. 承压水上充填开采底板破坏特征研究[J]. 煤矿安全,2023,54(9):187−193.
REN Yanghui. Failure characteristics of floor above aquifer using backfilling mining method[J]. Safety in Coal Mines, 2023, 54(9): 187−193.
|
[11] |
杨天鸿,师文豪,李顺才,等. 破碎岩体非线性渗流突水机理研究现状及发展趋势[J]. 煤炭学报,2016,41(7):1598−1609.
YANG Tianhong, SHI Wenhao, LI Shuncai, et al. State of the art and trends of water-inrush mechanism of nonlinear flow in fractured rock mass[J]. Journal of China Coal Society, 2016, 41(7): 1598−1609.
|
[12] |
李全生,李晓斌,许家林,等. 岩层采动裂隙演化规律与生态治理技术研究进展[J]. 煤炭科学技术,2022,50(1):28−47.
LI Quansheng, LI Xiaobin, XU Jialin, et al. Research advances in mining fractures evolution law of rock strata and ecological treatment technology[J]. Coal Science and Technology, 2022, 50(1): 28−47.
|
[13] |
原富珍,马克,庄端阳,等. 基于微震监测的董家河煤矿底板突水通道孕育机制[J]. 煤炭学报,2019,44(6):1846−1856.
YUAN Fuzhen, MA Ke, ZHUANG Duanyang, et al. Preparation mechanism of water inrush channels in bottom floor of Dongjiahe Coal Mine based on microseismic monitoring[J]. Journal of China Coal Society, 2019, 44(6): 1846−1856.
|
[14] |
姜福兴,杨淑华,XUN Luo. 微地震监测揭示的采场围岩空间破裂形态[J]. 煤炭学报,2003,28(4):357−360.
JIANG Fuxing, YANG Shuhua, XUN Luo. Spatial fracturing progresses of surrounding rock masses in longwall face monitored by microseismic monitoring techniques[J]. Journal of China Coal Society, 2003, 28(4): 357−360.
|
[15] |
姜福兴,尹永明,朱权洁,等. 基于微震监测的千米深井厚煤层综放面支架围岩关系研究[J]. 采矿与安全工程学报,2014,31(2):167−174.
JIANG Fuxing, YIN Yongming, ZHU Quanjie, et al. Relationship between support and surrounding rock of fully mechanized caving face in thick coal seam of kilometer deep mine based on microseismic monitoring technology[J]. Journal of Mining & Safety Engineering, 2014, 31(2): 167−174.
|
[16] |
靳德武,段建华,李连崇,等. 基于微震的底板采动裂隙扩展及导水通道识别技术研究[J]. 工程地质学报,2021,29(4):962−971.
JIN Dewu, DUAN Jianhua, LI Lianchong, et al. Microseismicity based research for mining induced fracture propagation and water pathway identification technology of floor[J]. Journal of Engineering Geology, 2021, 29(4): 962−971.
|
[17] |
连会青,杨艺,杨松霖,等. 基于微震监测技术的煤矿顶板水害预测[J]. 煤矿安全,2023,54(5):49−55
LIAN Huiqing, YANG Yi, YANG Songlin, et al. Prediction of coal mine roof water damage based on micro-seismic monitoring technology[J]. Safety in Coal Mines, 2023, 54(5): 49−55.
|
[18] |
巩思园,窦林名,曹安业,等. 煤矿微震监测台网优化布设研究[J]. 地球物理学报,2010,53(2):457−465
GONG Siyuan, DOU Linming, CAO Anye, et al. Study on optimal configuration of seismological observation network for coal mine[J]. Chinese Journal of Geophysics, 2010, 53(2): 457−465.
|
[19] |
刘晓明,赵嘉轩,王李管,等. 基于综合评价法的矿山微震监测台网布设评价[J]. 中国安全生产科学技术,2016,12(5):66−72.
LIU Xiaoming, ZHAO Jiaxuan, WANG Liguan, et al. Evaluation on layout of mine microseismic monitoring network based on comprehensive evaluation method[J]. Journal of Safety Science and Technology, 2016, 12(5): 66−72.
|
[20] |
许延春,黄磊. 基于微震监测的工作面底板突水全时空预警方法[J]. 煤炭科学技术,2023,51(1):369−382.
XU Yanchun, HUANG Lei. Full-time and space early-warning method for floor water inrush in working face based on microseismic monitoring[J]. Coal Science and Technology, 2023, 51(1): 369−382.
|
[21] |
李江华,许延春,谢小锋,等. 采高对煤层底板破坏深度的影响[J]. 煤炭学报,2015,40(S2):303−310.
LI Jianghua, XU Yanchun, XIE Xiaofeng, et al. Influence of mining height on coal seam floor failure depth[J]. Journal of China Coal Society, 2015, 40(S2): 303−310.
|
[1] | LIAN Huiqing, KANG Jia, YIN Shangxian, XU Bin, YAN Guocheng, XIA Xiangxue, XU Baotong. Research on intelligent video recognition method for roof water inrush signs in coal mines[J]. Safety in Coal Mines, 2025, 56(4): 166-173. DOI: 10.13347/j.cnki.mkaq.20240477 |
[2] | LI Chenxi, LU Haifeng. Prediction of water inrush from coal seam floor based on machine learning with small sample data[J]. Safety in Coal Mines, 2025, 56(1): 171-179. DOI: 10.13347/j.cnki.mkaq.20231371 |
[3] | LIAN Huiqing, YANG Yi, YANG Songlin, TANG Zhongyi, XU Bin, PEI Wenxian, WANG Rui, LI Qixing. Prediction of coal mine roof water damage based on micro-seismic monitoring technology[J]. Safety in Coal Mines, 2023, 54(5): 49-55. |
[4] | BIAN Kai, LI Siyu, LIU Bo, YANG Hao, SUN Hui. Study on water inrush law of mining floor in coal seam with fault above confined water[J]. Safety in Coal Mines, 2022, 53(6): 169-177. |
[5] | LIU Bo, GUAN Yongqiang, SUN Yuzhuang, ZHANG Huisong, BIAN Kai. Water inrush type division and water inrush mode in Fengfeng Mining Area[J]. Safety in Coal Mines, 2021, 52(11): 186-194. |
[6] | WANG Yue, YU Shui, WANG Sujian. Construction and Analysis of Microseismic Monitoring and Early Warning System for Mine Floor Water Inrush[J]. Safety in Coal Mines, 2019, 50(5): 190-193. |
[7] | ZHANG Peisen, AN Yufeng, WU Shouxin, ZHAO Yapeng, WEI Jie, WANG Wenmiao. Water Inrush Laws of Floor Failure in Coal Seam with Pressure Mining[J]. Safety in Coal Mines, 2019, 50(2): 25-29. |
[8] | QUAN Xiucai, GAO Mingshi, CHENG Zhichao, JIA Boning, LIU Shijie. Research Floor Damage Mechanism on Mining Above Confined Water[J]. Safety in Coal Mines, 2016, 47(1): 51-54. |
[9] | ZHANG Xueying, CHENG Shaohui, LI Fenglian, CHANG Wei, LI Yun. Coal Mine Water Inrush Prediction Warning Information System Based on ArcGIS Engine[J]. Safety in Coal Mines, 2014, 45(6): 100-103. |
[10] | ZHU Zongkui, XU Zhimin, SUN Yajun. Critical Water Inrush Monitoring Index and Early-warning Model of Mine Water Disaster[J]. Safety in Coal Mines, 2014, 45(1): 170-172. |