• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
XIE Biao, ZHU Dengkui, LI Baichen, et al. Research on optimal emergency evacuation path for mine water inrush based on dynamic D-K algorithm[J]. Safety in Coal Mines, 2024, 55(6): 192−199. DOI: 10.13347/j.cnki.mkaq.20231697
Citation: XIE Biao, ZHU Dengkui, LI Baichen, et al. Research on optimal emergency evacuation path for mine water inrush based on dynamic D-K algorithm[J]. Safety in Coal Mines, 2024, 55(6): 192−199. DOI: 10.13347/j.cnki.mkaq.20231697

Research on optimal emergency evacuation path for mine water inrush based on dynamic D-K algorithm

More Information
  • Received Date: November 23, 2023
  • Revised Date: December 07, 2023
  • After the occurrence of mine water inrush, choosing the appropriate emergency evacuation path is very important to reduce the casualty and the mine accident level. The traditional Dijkstra algorithm can not be effectively applied to the dynamic environment of mine water inrush. It can only statically plan a single optimal escape path. In view of the limitations of this algorithm, the time equivalent length is introduced to optimize the traditional Dijkstra algorithm to realize the dynamic change of the optimal escape path with time and water level height. Moreover, the optimized Dijkstra algorithm is combined with the K optimal path algorithm to realize the dynamic planning of multiple optimal escape paths. Field application shows that the optimized dynamic D-K algorithm can be effectively applied to mine water inrush with characteristics of randomness, dynamics and complex, which can provide important decision support for affected personnel to choose emergency escape path.

  • [1]
    叶力进,许进鹏,刘统学,等. 煤矿水害基本类型与动态演化类型划分[J]. 煤矿安全,2022,53(11):207−211.

    YE Lijin, XU Jinpeng, LIU Tongxue, et al. Basic types of mine water disasters and classification of dynamic evolution types[J]. Safety in Coal Mines, 2022, 53(11): 207−211.
    [2]
    徐斌,祁荣荣,尹尚先,等. 我国煤矿水害重特大事故相关因素特征分析及防治对策[J]. 煤矿安全,2023,54(5):13−19.

    XU Bin, QI Rongrong, YIN Shangxian, et al. Characteristics analysis of correlation factors of coal mine water hazard accidents and prevention and control measures[J]. Safety in Coal Mines, 2023, 54(5): 13−19.
    [3]
    孙文洁,李文杰,杨文凯,等. 煤炭矿山水环境问题类型划分及治理模式[J]. 煤矿安全,2023,54(5):35−41.

    SUN Wenjie, LI Wenjie, YANG Wenkai, et al. Classification of water environment problems in coal mine and treatment mode[J]. Safety in Coal Mines, 2023, 54(5): 35−41.
    [4]
    孙殿阁,蒋仲安. 改进的Dijkstra算法在矿井应急救援最优避灾路线求取中的应用[J]. 矿业安全与环保,2005,32(5):38−40.

    SUN Diange, JIANG Zhongan. Application of improved Dijkstra algorithm in choice of best escaping route in mine emergency response[J]. Mining Safety & Environmental Protectio, 2005, 32(5): 38−40.
    [5]
    成韶辉,张雪英,李凤莲,等. K则最优路径在矿井水害避灾中的应用研究[J]. 金属矿山,2014(1):137−140.

    CHENG Shaohui, ZHANG Xueying, LI Fenglian, et al. Application of K shortest path algorithm in avoiding from mine water disaster[J]. Metal Mine, 2014(1): 137−140.
    [6]
    赵作鹏,宋国娟,宗元元,等. 基于D-K算法的煤矿水灾多最佳路径研究[J]. 煤炭学报,2015,40(2):397−402.

    ZHAO Zuopeng, SONG Guojuan, ZONG Yuanyuan, et al. Research on the multi-optimal paths of coal mine floods based on the D-K algorithm[J]. Journal of China Coal Society, 2015, 40(2): 397−402.
    [7]
    卢国菊,高彩军. 矿井灾变时期最优避灾路径研究[J]. 矿业安全与环保,2017,44(2):70−73.

    LU Guoju, GAO Caijun. Research on optimal route for escaping disaster during period of mine disaster[J]. Mining Safety & Environmental Protection, 2017, 44(2): 70−73.
    [8]
    杜沅泽. 矿井水害应急疏散优化方法及系统研究[D]. 北京:中国矿业大学(北京),2023.
    [9]
    丁莹莹,卜昌森,连会青,等. 基于仿真平台的矿井突水淹没路径和逃生路径规划[J]. 煤矿安全,2023,54(5):20−26.

    DING Yingying, BU Changsen, LIAN Huiqing, et al. Mine water inrush path and escape path planning based on simulation platform[J]. Safety in Coal Mines, 2023, 54(5): 20−26.
    [10]
    于丹,颜伟,李劭昱. 基于权值时变模型的矿井突水最优逃生路径的动态选择[J]. 科学技术与工程,2022,22(12):4762−4771.

    YU Dan, YAN Wei, LI Shaoyu. Dynamic selection of optimal escape path of mine water inrush based on weight time-varying model[J]. Science Technology and Engineering, 2022, 22(12): 4762−4771.
    [11]
    卢国菊,王飞. 矿井火灾时期K则最优避灾路径研究[J]. 煤矿安全,2013,44(4):35−37.

    LU Guoju, WANG Fei. Research on K shortest avoid disaster path during mine fire period[J]. Metal Mine, 2013, 44(4): 35−37.
    [12]
    王德明,王省身,崔岗. 矿井火灾时期井巷可通行性及选择最佳救灾与避灾路线的研究[J]. 煤炭学报,,1994(1):58−61.

    WANG Deming, WANG Shengshen, CUI Gang. Travel ability of shaft and roadway in a mine fire hazard and selection of optimal rescue and escape routes[J]. Journal of China Coal Society, 1994(1): 58−61.
    [13]
    倪燕. 金属矿山井下灾害人员逃生最优路径研究[D]. 长沙:中南大学,2013.
    [14]
    冯子阳. 矿井突水模拟及逃生路径分析系统研究与应用[D]. 北京:中国矿业大学(北京),2022.
    [15]
    康宁. 基于改进Dijkstra算法的煤矿井下应急路径规划研究[D]. 西安:西安科技大学,2020.
    [16]
    Sedeño-noda A, Colebrook M. A biobjective Dijkstra algorithm[J]. European Journal of Operational Rese-arch, 2019, 276(1): 106−118.
    [17]
    高松,陆锋. K则最短路径算法效率与精度评估[J]. 中国图象图形学报,2009,14(8):1677−1683.

    GAO Song, LU Feng. The Kth shortest path algorithms: accuracy and efficiency eval-uation[J]. Journal of Image and Graphics, 2009, 14(8): 1677−1683.
    [18]
    周越,朱希安,王占刚. 矿井水灾逃生路径建模及路径规划研究[J]. 煤矿安全,2018,49(11):199−203.

    ZHOUYue, ZHU Xi’an, WANG Zhangang. Research on escape path modeling and planning for mine flood[J]. Safety in Coal Mines, 2018, 49(11): 199−203.
    [19]
    周越,朱希安,王占刚. Dijkstra算法在矿井水灾动态避灾路径中的改进与应用[J]. 煤炭工程,2019,51(3):18−22.

    ZHOU Yue, ZHU Xi’an, WANG Zhangang. Improvement and application in Dijkstra algorithm in dynamic route selection of mine flood[J]. Coal Engineering, 2019, 51(3): 18−22.
  • Related Articles

    [1]ZHAO Shankun, WANG Bingqin, SU Zhenguo, LI Shaogang, SHI Yue, SANG Xincheng, LIU An, HAN Weige. Technology and application of long directional drilling hydraulic fracturing for preventing rock burst in thick and hard roof[J]. Safety in Coal Mines, 2024, 55(12): 10-21. DOI: 10.13347/j.cnki.mkaq.20240926
    [2]SUN Ruda. Study on anti-impact effect of hydraulic fracturing for long holes in medium and high thick hard roof[J]. Safety in Coal Mines, 2023, 54(7): 69-77.
    [3]XU Chao, YANG Gang, FU Qiang, WANG Yifu, MA Sibo, ZHAO Wei, GUO Haijun. Study on pressure relief effect of repeated mining in cross-stacked protective face[J]. Safety in Coal Mines, 2022, 53(10): 64-73.
    [4]WU Jianxing. Application of hydraulic fracturing pressure relief technology in surrounding rock control of double-U roadway retaining[J]. Safety in Coal Mines, 2021, 52(5): 112-119.
    [5]XU Junjian. Numerical simulation analysis of pressure relief effect under the combined action of horizontal slotting and roof fracturing[J]. Safety in Coal Mines, 2021, 52(4): 194-200.
    [6]SUN Zhenping. Application of Cutting Roof Pressure Relief Pre-fracturing Technology in Fully Mechanized Caving Face in Extra Thick Coal Seam[J]. Safety in Coal Mines, 2020, 51(8): 169-173,177.
    [7]TAO Yunqi, MENG Jie. The Relief Pressure and Permeability Improvement Mechanism of Huff Hydraulic Fracturing and Its Application[J]. Safety in Coal Mines, 2014, 45(5): 125-128.
    [8]LI Yuan, YI En-bing. Numerical Analysis of Pressure-relief Effects in Liberated Layer Mining[J]. Safety in Coal Mines, 2013, 44(12): 150-153,156.
    [9]LIU Jian-gao, XIE Xiao-ping, LIU Zong-zhu. Effect Analysis on Pressure Relief for Protective Seam Mining of Thin Coal Seam in High-gas Coal Seam Group[J]. Safety in Coal Mines, 2013, 44(10): 192-195.
    [10]XU Chao, CHENG Yuan-ping, WANG Liang, LIU Qing-quan, CAI Chun-cheng. The Influence of Extremely Thick Key Layer on Pressure-relief Effect of Remote Lower Protective Seam Mining[J]. Safety in Coal Mines, 2012, 43(8): 26-29.

Catalog

    Article views (24) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return