Citation: | XIE Beijing, LI Xiaoxu, LIANG Tianyu, et al. Study on mechanical characteristics of cemented backfill under dynamic load[J]. Safety in Coal Mines, 2025, 56(3): 137−147. DOI: 10.13347/j.cnki.mkaq.20231481 |
To study the mechanical characteristics of cemented backfill with different batching ratio and mass fraction conditions under impact loading, a 50 mm rod diameter split Hopkinson pressure bar test device was used to carry out impact loading tests on the cemented backfill, and at the same time, according to the results of the SHPB experiments, the damage process of the cemented backfill and coal rock affected by the impact pressure in the underground backfill mining was simulated with the help of Holmquist-Johnson-Cook (HJC) model. The results show that the dynamic compressive strength of cemented backfill shows a good strain rate effect. In the lower strain rate range (46.21-79.85 s−1), the higher the coarse aggregate content, the lower the peak stress, and the maximum strength of the filling body decreased by 87.94%; in the higher strain rate range (145.01-197.48 s−1), the peak stress increases obviously with the increase of coarse aggregate content, and the strength of backfill increases by 53.56%; the increase of mass fraction and gray-sand ratio has a significant strengthening effect on the strain rate effect of compressive strength. The increase of mass fraction and ash-sand ratio makes the dissipation rate of the cemented backfill specimen show a tendency to increase; the numerical simulation results of SHPB are in good agreement with the experimental results, and the simulation results of impact ground pressure verified that the cemented backfill has a certain protective effect on the coal rock mining in the backfill mining.
[1] |
侯永强,尹升华,杨世兴,等. 动态荷载下胶结充填体力学响应及能量损伤演化过程研究[J]. 岩土力学,2022,43(S1):145−156.
HOU Yongqiang, YIN Shenghua, YANG Shixing, et al. Mechanical response and energy damage evolution process of cemented backfill under impact loading[J]. Rock and Soil Mechanics, 2022, 43(S1): 145−156.
|
[2] |
侯永强,尹升华,杨世兴,等. 冲击荷载作用下全尾砂胶结充填体的能耗特征与损伤特性[J]. 中国有色金属学报,2021,31(6):1661−1671.
HOU Yongqiang, YIN Shenghua, YANG Shixing, et al. Energy consumption characteristics and damage characteristics of full tailings cemented backfill under impact loading[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(6): 1661−1671.
|
[3] |
侯永强,尹升华,杨世兴,等. 冲击载荷下胶结充填体的力学性能及能耗特征[J]. 华中科技大学学报(自然科学版),2020,48(8):50−56.
HOU Yongqiang, YIN Shenghua, YANG Shixing, et al. Mechanical properties and energy consumption characteristics of cemented backfill under impact load[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(8): 50−56.
|
[4] |
杨世兴,王洪江,侯永强,等. 冲击加载下尾砂胶结充填体力学行为及变形破坏特征[J]. 中国有色金属学报,2022,32(3):908−919. doi: 10.1016/S1003-6326(22)65842-4
YANG Shixing, WANG Hongjiang, HOU Yongqiang, et al. Mechanical behavior and deformation failure characteristics of cemented tailings backfill under impact loading[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(3): 908−919. doi: 10.1016/S1003-6326(22)65842-4
|
[5] |
张友锋,付玉华,余姚. 冲击加载下养护龄期对掺膨润土充填体力学破坏特征研究[J]. 有色金属工程,2021,11(9):113−122.
ZHANG Youfeng, FU Yuhua, YU Yao. Influence of curing age on mechanical failure characteristics of bentonite backfill under impact loading[J]. Nonferrous Metals Engineering, 2021, 11(9): 113−122.
|
[6] |
吴振坤,金爱兵,陈帅军. 胶结充填体动力试验及其爆破响应模拟研究[J]. 金属矿山,2020(7):25−32.
WU Zhenkun, JIN Aibing, CHEN Shuaijun. Study on cemented tailing backfill dynamic characteristics and its blasting response simulation[J]. Metal Mine, 2020(7): 25−32.
|
[7] |
刘冰. 动荷载下矿岩体与胶结充填体力学特性及工程应用研究[D]. 北京:北京科技大学,2021.
|
[8] |
LI J X, SUN W, LI Q Q, et al. Influence of layered angle on dynamic characteristics of backfill under impact loading[J]. Minerals, 2022, 12(5): 511. doi: 10.3390/min12050511
|
[9] |
张钦礼,杨伟,杨珊,等. 动载下高密度全尾砂胶结充填体稳定性试验研究[J]. 中国安全科学学报,2015,25(3):78−82.
ZHANG Qinli, YANG Wei, YANG Shan, et al. Test research on stability of high density total tailing cemented backfilling under dynamic loading[J]. China Safety Science Journal, 2015, 25(3): 78−82.
|
[10] |
杨伟,陶明,李夕兵,等. 高应变率下灰砂比对全尾胶结充填体力学性能影响[J]. 东北大学学报(自然科学版),2017,38(11):1659−1663.
YANG Wei, TAO Ming, LI Xibing, et al. Mechanical properties of the total tailing cemented backfilling impacted by cement-sand ratio under high strain rate[J]. Journal of Northeastern University (Natural Science), 2017, 38(11): 1659−1663.
|
[11] |
ZHANG Y H, WANG X M, WEI C, et al. Dynamic mechanical properties and instability behavior of layered backfill under intermediate strain rates[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(7): 1608−1617. doi: 10.1016/S1003-6326(17)60183-3
|
[12] |
刘恩彦,刘福春,熊有为. 超细全尾砂充填体动态力学特性研究[J]. 金属矿山,2020(1):81−88.
LIU Enyan, LIU Fuchun, XIONG Youwei. Study on the dynamic mechanical properties of ultrafine tailing backfill[J]. Metal Mine, 2020(1): 81−88.
|
[13] |
ZHENG D, SONG W D, CAO S, et al. Dynamical mechanical properties and microstructure characteristics of cemented tailings backfill considering coupled strain rates and confining pressures effects[J]. Construction and Building Materials, 2022, 320: 126321. doi: 10.1016/j.conbuildmat.2022.126321
|
[14] |
李金鑫,孙伟,赵建光,等. 冲击荷载作用下层状充填体动力学特性及破坏模式[J]. 中南大学学报(自然科学版),2023,54(3):944−955.
LI Jinxin, SUN Wei, ZHAO Jianguang, et al. Dynamic characteristics and failure mode of layered backfill under impact load[J]. Journal of Central South University (Science and Technology), 2023, 54(3): 944−955.
|
[15] |
张金,金爱兵,陈帅军. 嗣后充填采场爆破与充填体稳定协同效应研究[J]. 金属矿山,2021(9):8−17.
ZHANG Jin, JIN Aibing, CHEN Shuaijun. Study on synergistic effect of blasting effect and backfill stability in post-filling stope[J]. Metal Mine, 2021(9): 8−17.
|
[16] |
朱鹏瑞,宋卫东,徐琳慧,等. 冲击荷载作用下胶结充填体的力学特性研究[J]. 振动与冲击,2018,37(12):131−137,166.
ZHU Pengrui, SONG Weidong, XU Linhui, et al. A study on mechanical properties of cemented backfills under impact compressive loading[J]. Journal of Vibration and Shock, 2018, 37(12): 131−137,166.
|
[17] |
XU W B, CAO Y, LIU B H. Strength efficiency evaluation of cemented tailings backfill with different stratified structures[J]. Engineering Structures, 2019, 180: 18−28. doi: 10.1016/j.engstruct.2018.11.030
|
[18] |
李祥龙,李强,王建国,等. 胶结充填体冲击破坏及损伤演化数值模拟研究[J]. 北京理工大学学报,2022,42(7):733−740.
LI Xianglong, LI Qiang, WANG Jianguo, et al. Numerical simulation research on impact failure and damage evolution of cemented backfill[J]. Transactions of Beijing Institute of Technology, 2022, 42(7): 733−740.
|
[19] |
解北京,栾铮,刘天乐,等. 静水压下原生组合煤岩动力学破坏特征[J]. 煤炭学报,2023,48(5):2153−2167.
XIE Beijing, LUAN Zheng, LIU Tianle, et al. Dynamic failure characteristics of primary coal-rock combination under hydrostatic pressure[J]. Journal of China Coal Society, 2023, 48(5): 2153−2167.
|
[20] |
娄乾星,陶铁军,田兴朝,等. 基于HJC本构模型的石灰岩冲击破坏形态数值模拟方法研究[J]. 爆破,2022,39(4):71−79.
LOU Qianxing, TAO Tiejun, TIAN Xingchao, et al. Research on numerical simulation method of limestone impact failure based on HJC constitutive model[J]. Blasting, 2022, 39(4): 71−79.
|
[21] |
解北京. 煤冲击破坏动力学特性及磁场变化特征实验研究[D]. 北京:中国矿业大学(北京),2013.
|