• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
CHEN Xiangjun, YE Xiangyang, LI Yibo, et al. Spatial distribution and migration law of respirable dust in fully mechanized mining face[J]. Safety in Coal Mines, 2025, 56(1): 62−71. DOI: 10.13347/j.cnki.mkaq.20231463
Citation: CHEN Xiangjun, YE Xiangyang, LI Yibo, et al. Spatial distribution and migration law of respirable dust in fully mechanized mining face[J]. Safety in Coal Mines, 2025, 56(1): 62−71. DOI: 10.13347/j.cnki.mkaq.20231463

Spatial distribution and migration law of respirable dust in fully mechanized mining face

More Information
  • Received Date: October 12, 2023
  • Revised Date: December 27, 2023
  • For the problem that the dust sampling method can only measure the dust mass concentration at fixed working locations, and can not systematically reflect the spatial distribution characteristics and migration rules of the dust mass concentration in the working face, taking the N1219 fully mechanized mining face of Ningtiaota Coal Mine as the research object, a three-dimensional numerical simulation was conducted on the spatial distribution and transport law of respirable dust (hereinafter referred to as “exhaled dust”) in the fully mechanized mining face using Fluent software, using the method of bidirectional coupling between discrete and continuous phases. The simulation results show that the particle size of dust particles on the side of the shearer is generally higher than that on the side of the hydraulic support. Considering that there is air leakage when the air flow on the support side flows towards the goaf, the carrying capacity of the air flow is weakened, and the particle size of dust particles carried is smaller; the dust generated by drum coal cutting presents two stages in the direction of the working face: the section between 70 m and 120 m from the intake airway is a “rapid descent section”, and the section between 120 m and 280 m from the intake airway is a “slow descent section”. In addition, the maximum mass concentration of dust generated in the direction of the working face can reach 1 600 mg/m3; in the inclined direction of the working face, the farther away from the coal wall, the lower the dust mass concentration generated by the drum cutting coal, and the dust mass concentration decreases to 0 mg/m3 at a distance of 4-5 m from the coal wall; in the section from 80 m to 280 m, all the dust generated by moving the frame is concentrated on the side of the hydraulic support; in the range of 40 m to 240 m, the mass concentration of exhaled dust carried by ventilation is evenly distributed in the height direction of the working face.

  • [1]
    袁亮. 煤矿粉尘防控与职业安全健康科学构想[J]. 煤炭学报,2020,45(1):1−7.

    YUAN Liang. Scientific conception of coal mine dust control and occupational safety[J]. Journal of China Coal Society, 2020, 45(1): 1−7.
    [2]
    程卫民,周刚,陈连军,等. 我国煤矿粉尘防治理论与技术20年研究进展及展望[J]. 煤炭科学技术,2020,48(2):1−20.

    CHENG Weimin, ZHOU Gang, CHEN Lianjun, et al. Research progress and prospect of dust control theory and technology in China’s coal mines in the past 20 years[J]. Coal Science and Technology, 2020, 48(2): 1−20.
    [3]
    王杰,郑林江. 煤矿粉尘职业危害监测技术及其发展趋势[J]. 煤炭科学技术,2017,45(11):119−125.

    WANG Jie, ZHENG Linjiang. Development tendency and monitoring technology of dust occupational hazard in coal mine[J]. Coal Science and Technology, 2017, 45(11): 119−125.
    [4]
    WANG J, LEVY E K. Particle motions and distributions in turbulent boundary layer of air–particle flow past a vertical flat plate[J]. Experimental Thermal and Fluid Science, 2003, 27(8): 845−853. doi: 10.1016/S0894-1777(03)00049-9
    [5]
    周刚,程卫民,陈连军,等. 综放工作面粉尘浓度空间分布规律的数值模拟及其应用[J]. 煤炭学报,2010,35(12):2094−2099.

    ZHOU Gang, CHENG Weimin, CHEN Lianjun, et al. Numerical simulation and its application of dust concentration spatial distribution regularities in fully-mechanized caving face[J]. Journal of China Coal Society, 2010, 35(12): 2094−2099.
    [6]
    刘毅,蒋仲安,蔡卫,等. 综采工作面粉尘浓度分布的现场实测与数值模拟[J]. 煤炭科学技术,2006,34(4):80−82. doi: 10.3969/j.issn.0253-2336.2006.04.027

    LIU Yi, JIANG Zhongan, CAI Wei, et al. Site measurement and digital simulation of dust density distribution in fully mechanized longwall coal mining face[J]. Coal Science and Technology, 2006, 34(4): 80−82. doi: 10.3969/j.issn.0253-2336.2006.04.027
    [7]
    程卫民,张清涛,刘中胜,等. 综掘面粉尘场数值模拟及除尘系统研制与实践[J]. 煤炭科学技术,2011,39(10):39−44.

    CHENG Weimin, ZHANG Qingtao, LIU Zhongsheng, et al. Research and practices on numerical simulation of dust field and dust collection system in full mechanized mine roadway heading face[J]. Coal Science and Technology, 2011, 39(10): 39−44.
    [8]
    陈举师,蒋仲安,杨斌,等. 破碎硐室粉尘浓度空间分布规律的数值模拟[J]. 煤炭学报,2012,37(11):1865−1870.

    CHEN Jushi, JIANG Zhongan, YANG Bin, et al. Numerical simulation of spatial dust concentration distribution regularities in crushing chamber[J]. Journal of China Coal Society, 2012, 37(11): 1865−1870.
    [9]
    蒋仲安,陈记合,王明,等. 卸矿站粉尘浓度影响因素的数值模拟研究[J]. 煤炭学报,2018,43(S1):185−191.

    JIANG Zhongan, CHEN Jihe, WANG Ming, et al. Numerical simulation on influencing factors of dust concentration in ore unloading station[J]. Journal of China Coal Society, 2018, 43(S1): 185−191.
    [10]
    蒋仲安,陈举师,王晶晶,等. 胶带输送巷道粉尘运动规律的数值模拟[J]. 煤炭学报,2012,37(4):659−663.

    JIANG Zhongan, CHEN Jushi, WANG Jingjing, et al. Numerical simulation of dust movement regularities in belt conveyer roadway[J]. Journal of China Coal Society, 2012, 37(4): 659−663.
    [11]
    王晓珍,蒋仲安,王善文,等. 煤巷掘进过程中粉尘浓度分布规律的数值模拟[J]. 煤炭学报,2007,32(4):386−390.

    WANG Xiaozhen, JIANG Zhongan, WANG Shanwen, et al. Numerical simulation of distribution regularities of dust concentration during the ventilation process of coal roadway driving[J]. Journal of China Coal Society, 2007, 32(4): 386−390.
    [12]
    王冕. 掘进巷道流场结构及粉尘沉降规律相似模拟研究[J]. 矿业安全与环保,2021,48(3):56−61.

    WANG Mian. Similar simulation study on the flow field structure and the law of dust settlement of heading roadway[J]. Mining Safety & Environmental Protection, 2021, 48(3): 56−61.
    [13]
    王洪胜,吴兵,丁晓文. 胶带运输系统粉尘运动规律及控制技术模拟研究[J]. 矿业安全与环保,2017,44(3):10−15.

    WANG Hongsheng, WU Bing, DING Xiaowen. Simulation study on dust movement law and control technology of belt conveyor system[J]. Mining Safety & Environmental Protection, 2017, 44(3): 10−15.
    [14]
    吴立荣,王丹. 基于Fluent综放工作面移架作业粉尘运移及浓度变化规律模拟[J]. 矿业安全与环保,2015,42(5):29−33.

    WU Lirong, WANG Dan. Simulation of dust migration and concentration change law during powered support advance in fully mechanized top-coal caving face based on fluent[J]. Mining Safety & Environmental Protection, 2015, 42(5): 29−33.
    [15]
    姚玉静,程卫民,聂文,等. 综掘工作面粉尘浓度分布的数值模拟[J]. 矿业安全与环保,2011,38(3):21−22.

    YAO Yujing, CHENG Weimin, NIE Wen, et al. Numerical simulation of dust concentration distribution in a fully mechanized heading face[J]. Mining Safety & Environmental Protection, 2011, 38(3): 21−22.
    [16]
    姚锡文,李兴,鹿广利. 大倾角综放工作面风流场及粉尘场的数值模拟[J]. 矿业安全与环保,2013,40(1):40−43. doi: 10.3969/j.issn.1008-4495.2013.01.012

    YAO Xiwen, LI Xing, LU Guangli. Numerical simulation of ventilation flow field and dust field in fully mechanized caving face with large dip angle[J]. Mining Safety & Environmental Protection, 2013, 40(1): 40−43. doi: 10.3969/j.issn.1008-4495.2013.01.012
    [17]
    任志峰,李远知,武建君,等. 采煤机割煤产尘及粉尘运移规律的数值模拟[J]. 煤矿安全,2021,52(7):170−174.

    REN Zhifeng, LI Yuanzhi, WU Jianjun, et al. Numerical analysis on migration of shearer-generated dust in mechanized coal mining workface[J]. Safety in Coal Mines, 2021, 52(7): 170−174.
    [18]
    孔阳,庞浩生,宋淑郑,等. 综采工作面粉尘弥散污染规律数值模拟研究[J]. 煤矿安全,2020,51(6):218−222.

    KONG Yang, PANG Haosheng, SONG Shuzheng, et al. Numerical simulation study on law of dispersive pollution of dust in fully mechanized mining face[J]. Safety in Coal Mines, 2020, 51(6): 218−222.
    [19]
    冯博,卢晓龙,王峰. 综采工作面采煤机在不同区域粉尘逸散规律数值模拟[J]. 煤矿安全,2018,49(11):176−179.

    FENG Bo, LU Xiaolong, WANG Feng. Numerical simulation of laws of dust dispersion of coal cutter working at different regions of fully mechanized coal mining face[J]. Safety in Coal Mines, 2018, 49(11): 176−179.
    [20]
    白若男,张琦,于海明,等. 综采工作面风速对粉尘分布规律影响的数值模拟分析[J]. 煤矿安全,2015,46(9):180−183.

    BAI Ruonan, ZHANG Qi, YU Haiming, et al. Numerical simulation analysis of dust distribution laws affected by wind speed at fully-mechanized working face[J]. Safety in Coal Mines, 2015, 46(9): 180−183.
    [21]
    刘晴,郝永江,赵振保. 综采工作面粉尘分布规律及防尘措施研究[J]. 煤矿安全,2023,54(6):47−53.

    LIU Qing, HAO Yongjiang, ZHAO Zhenbao. Study on dust distribution and dust prevention measures in fully mechanized coal face[J]. Safety in Coal Mines, 2023, 54(6): 47−53.
    [22]
    廖贤鑫,蒋仲安,牛伟,等. 采场爆破粉尘运移规律的Fluent数值模拟[J]. 安全与环境学报,2012,12(6):43−46.

    LIAO Xianxin, JIANG Zhongan, NIU Wei, et al. Numerical simulations of blasting dust migration with the use of Fluent in stope[J]. Journal of Safety and Environment, 2012, 12(6): 43−46.
    [23]
    聂文,张琦,白若男,等. 巷道湿喷作业风流−粉尘运移规律的数值模拟[J]. 安全与环境学报,2015,15(5):73−77.

    NIE Wen, ZHANG Qi, BAI Ruonan, et al. Numerical simulation on the regularity of the wind-dust migration in the wet shotcreting roadway[J]. Journal of Safety and Environment, 2015, 15(5): 73−77.
    [24]
    宋淑郑,屈亚龙,荆斌. 基于FLUENT综采工作面风流−粉尘逸散规律探究[J]. 矿业研究与开发,2019,39(11):79−83.

    SONG Shuzheng, QU Yalong, JING Bin. Study on the dispersion law of air flow and dust in fully-mechanized mining face based on FLUENT[J]. Mining Research and Development, 2019, 39(11): 79−83.
    [25]
    蒋宜宸,金龙哲,王天暘. 梅山铁矿采场爆破粉尘运移规律数值模拟研究[J]. 矿业研究与开发,2021,41(4):38−42.

    JIANG Yichen, JIN Longzhe, WANG Tianyang. Numerical simulation of blasting dust migration in Meishan iron mine[J]. Mining Research and Development, 2021, 41(4): 38−42.
    [26]
    姚海飞,邓志刚,李继良,等. 抽出式通风风流运动及粉尘运移规律数值模拟研究[J]. 煤矿开采,2014,19(5):96−99.

    YAO Haifei, DENG Zhigang, LI Jiliang, et al. Numerical simulation for airflow movement and dust transportation of exhaust ventilation[J]. Coal Mining Technology, 2014, 19(5): 96−99.
    [27]
    马云东,罗根华,郭昭华. 转载点粉尘颗粒扩散运动规律的数值模拟[J]. 安全与环境学报,2006,6(2):16−18.

    MA Yundong, LUO Genhua, GUO Zhaohua. Numerical simulation on application of diffuse regulation with power dust in transshipping site[J]. Journal of Safety and Environment, 2006, 6(2): 16−18.
    [28]
    乔金林,张旭,察兴鹏,等. 超大采高综采面风流−粉尘耦合扩散特性研究[J]. 煤矿机械,2022,43(11):60−63.

    QIAO Jinlin, ZHANG Xu, CHA Xingpeng, et al. Study on coupling diffusion characteristics of airflow and dust in super large mining height fully mechanized mining face[J]. Coal Mine Machinery, 2022, 43(11): 60−63.
    [29]
    尹文婧,李斌,王峰. 综采工作面风流−粉尘逸散规律CFD模拟分析[J]. 中国煤炭,2018,44(4):112−115.

    YIN Wenjing, LI Bin, WANG Feng. CFD simulation analysis of airflow and dust dispersion laws in fully mechanized mining face[J]. China Coal, 2018, 44(4): 112−115.
    [30]
    张辛亥,尚治州,冯振,等. 大采高综采工作面风流−呼吸带粉尘分布数值模拟[J]. 安全与环境学报,2021,21(2):570−575.

    ZHANG Xinhai, SHANG Zhizhou, FENG Zhen, et al. Numerically simulated distribution of the airflow and dust movement in the respiratory zone at the fully mechanized mining face with great mining height[J]. Journal of Safety and Environment, 2021, 21(2): 570−575.
  • Related Articles

    [1]TONG Linquan, XU Yang, WANG Xuetao, YANG Hanbin, MA Kui. CFD-DEM numerical study on coal dust pollution law of coal transfer point in underground coal mine[J]. Safety in Coal Mines, 2021, 52(5): 188-192,200.
    [2]XIANG Xiaogang, SUN Shaowei, ZHAO Meicheng, DENG Xiaoliang, LI Peng, XU Rui. Numerical simulation study on distribution law of respirable dust concentration and its relationship with turbulence intensity in fully mechanized mining face[J]. Safety in Coal Mines, 2021, 52(4): 13-19.
    [3]KONG Yang, PANG Haosheng, SONG Shuzheng, MENG Qunzhi. Numerical Simulation Study on Law of Dispersive Pollution of Dust in Fully Mechanized Mining Face[J]. Safety in Coal Mines, 2020, 51(6): 218-222.
    [4]LEI Meng. Study on Dust Migration Laws of Fully Mechanized Mining Face Based on Time Scale[J]. Safety in Coal Mines, 2019, 50(3): 185-188.
    [5]XU Shengdong, LI Dewen, CHEN Fang. Numerical Simulation on Distribution Laws of Air and Respirable Dust at Fully Mechanized Face with 8 m Mining Height[J]. Safety in Coal Mines, 2018, 49(12): 160-163,168.
    [6]DING Cui. Research Progress of Dust Movement and Diffusion Laws in Excavation Roadway[J]. Safety in Coal Mines, 2018, 49(9): 219-222,232.
    [7]ZHAO Leiyu, WEI Xiuye, LIU Qiuzu, WANG Xindong. CFD Simulations on Gas-particle Two Phase Flow of Dust Distribution[J]. Safety in Coal Mines, 2016, 47(1): 148-150.
    [8]BAI Ruonan, ZHANG Qi, YU Haiming, MA Xiao, CHEN Hongtao. Numerical Simulation Analysis of Dust Distribution Laws Affected by Wind Speed at Fully-mechanized Working Face[J]. Safety in Coal Mines, 2015, 46(9): 180-183.
    [9]MuLaLi?MaZhaFu, DING Yong-ming, CHEN Ju-shi. The Rule of Dust Concentration Distribution at Fully-mechanized Face in Xiaohonggou Coal Mine[J]. Safety in Coal Mines, 2013, 44(6): 165-167.
    [10]YAO Xi-wen, LU Guang-li. Numerical Simulation of Distribution Laws of Dust Concentration in Fully Mechanized Caving Face With High Inclination Angle[J]. Safety in Coal Mines, 2013, 44(2): 22-24,25.
  • Cited by

    Periodical cited type(7)

    1. 魏启明,胡亚军,张海龙,杨宗泉,王虎,刘玉德. 煤层群下煤层开采工作面矿压显现规律研究. 当代化工研究. 2025(01): 43-45 .
    2. 安伟岗,陆星,白贝贝. 煤矿综采工作面增面设备安装及施工技术研究. 设备管理与维修. 2025(04): 97-99 .
    3. 武瑞成. 厚煤层综放开采矿压显现异常治理研究. 内蒙古煤炭经济. 2024(04): 67-69 .
    4. 尚立斌. 阳泉矿区大埋深超长工作面装备适应性研究. 煤炭技术. 2024(06): 217-219 .
    5. 孙俊明,侯增平,徐宏强. 超长工作面液压支架关键参数设计及效益分析. 陕西煤炭. 2024(08): 72-77 .
    6. 李尚国. 超长工作面采空区分段阻隔自燃防治研究. 煤炭与化工. 2024(11): 121-124 .
    7. 薛丁才. 煤矿120210工作面矿压监测及采煤工艺优化分析. 山西冶金. 2024(11): 205-207 .

    Other cited types(1)

Catalog

    Article views (51) PDF downloads (10) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return