• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZHANG Liang, LAI Fangfang, XU Jingde. Study on the significant effects of ignition energy and gas volume fraction on gas explosion pressure and flame propagation speed[J]. Safety in Coal Mines, 2025, 56(1): 12−18. DOI: 10.13347/j.cnki.mkaq.20231099
Citation: ZHANG Liang, LAI Fangfang, XU Jingde. Study on the significant effects of ignition energy and gas volume fraction on gas explosion pressure and flame propagation speed[J]. Safety in Coal Mines, 2025, 56(1): 12−18. DOI: 10.13347/j.cnki.mkaq.20231099

Study on the significant effects of ignition energy and gas volume fraction on gas explosion pressure and flame propagation speed

More Information
  • Received Date: August 03, 2023
  • Revised Date: October 07, 2024
  • The maximum flame propagation speed, the peak pressure and the pressure rise rate of gas explosion were studied under the influence of two factors of ignition energy and gas volume fraction, by using the orthogonal experimental method in a closed pipeline with a length of 35 m and a cross-sectional area of 200 mm×200 mm. The significant impact law of gas-air mixture explosion under different ignition energy and gas volume fraction conditions was obtained. The experimental results show that under the same gas volume fraction, the flame propagation speed of gas explosion gradually increases with the extension of propagation distance from the ignition position, reaching the maximum value near the outlet, and the larger the ignition energy is, the greater the flame propagation speed is; under the same ignition energy, the maximum flame propagation speed first increases and then decreases with the increase of gas volume fraction, reaching its maximum at a gas volume fraction of 9.5%; from the analysis of range and significance effects, gas volume fraction and ignition energy and their interaction have significant effects on the maximum flame propagation speed, and the significant effects are as follows: the gas volume fraction > the ignition energy > their interaction; under the same gas volume fraction, the peak pressure and the pressure rise rate of gas explosion both increase with the increase of ignition energy, the larger the ignition energy, the higher the peak pressure and the pressure rise rate; under the same ignition energy, the peak pressure and the pressure rise rate first increase and then decrease with the increase of gas volume fraction, with the maximum value at a gas volume fraction of 9.5%; in the aspects of range and significance effects, the gas volume fraction and the ignition energy have a significant impact on the peak pressure and the pressure rise rate, the significance effects are as follows: the ignition energy > the gas volume fraction, and the interaction between the two has no significant effect on the peak pressure and the pressure rise rate.

  • [1]
    蓝航,陈东科,毛德兵. 我国煤矿深部开采现状及灾害防治分析[J]. 煤炭科学技术,2016,44(1):39−46.

    LAN Hang, CHEN Dongke, MAO Debing. Current status of deep mining and disaster prevention in China[J]. Coal Science and Technology, 2016, 44(1): 39−46.
    [2]
    CHEN X J, LI L Y, WANG L, et al. The current situation and prevention and control countermeasures for typical dynamic disasters in kilometer-deep mines in China[J]. Safety Science, 2019, 115: 229−236. doi: 10.1016/j.ssci.2019.02.010
    [3]
    景国勋,穆璐璐. 煤矿瓦斯爆炸事故统计分析及应急管理研究[J]. 安全与环境学报,2023,23(10):3657−3665.

    JING Guoxun, MU Lulu. Study on statistical analysis and emergency management of coal mine gas explosion accident[J]. Journal of Safety and Environment, 2023, 23(10): 3657−3665.
    [4]
    黄文祥,李树刚,李孝斌,等. 不同点火能量作用下管道内瓦斯爆炸火焰传播特征[J]. 煤矿安全,2011,42(8):7−10.

    HUANG Wenxiang, LI Shugang, LI Xiaobin, et al. Flame propagation characteristics of gas explosion that under different ignition energy in duct[J]. Safety in Coal Mines, 2011, 42(8): 7−10.
    [5]
    仇锐来. 点火能量对瓦斯爆炸火焰传播速度的影响[J]. 煤炭科学技术,2011,39(3):52−55.

    QIU Ruilai. Ignition energy influenced to travel speed of gas explosion flame[J]. Coal Science and Technology, 2011, 39(3): 52−55.
    [6]
    仇锐来,张延松,司荣军,等. 点火能量对瓦斯爆炸传播影响的实验研究[J]. 矿业安全与环保,2011,38(1):6−9.

    QIU Ruilai, ZHANG Yansong, SI Rongjun, et al. Experimental study on influence of ignition energy upon gas explosion propagation[J]. Mining Safety & Environmental Protection, 2011, 38(1): 6−9.
    [7]
    仇锐来. 点火能量对瓦斯爆炸传播的数值模拟研究[J]. 煤矿安全,2011,42(1):5−8.

    QIU Ruilai. Numerical simulation study of gas expl-osion dissemination in ingnition energy[J]. Safety in Coal Mines, 2011, 42(1): 5−8.
    [8]
    李润之,司荣军. 点火能量对瓦斯爆炸压力影响的实验研究[J]. 矿业安全与环保,2010,37(2):14−16.

    LI Runzhi, SI Rongjun. Experimental study on impact of ignition energy on gas explosion pressure[J]. Mining Safety & Environmental Protection, 2010, 37(2): 14−16.
    [9]
    李润之,司荣军. 瓦斯浓度对爆炸压力及压力上升速率影响[J]. 西安科技大学学报,2010,30(1):29−33.

    LI Runzhi, SI Rongjun. Effect of gas concentration on the explosion pressure and pressure rise rate[J]. Journal of Xi’an University of Science and Technology, 2010, 30(1): 29−33.
    [10]
    徐景德,赖芳芳,杨鑫,等. 强火源条件下瓦斯点火化学热力学特征[J]. 煤矿安全,2015,46(2):158−160.

    XU Jingde, LAI Fangfang, YANG Xin, et al. Chemical thermodynamics characteristics of gas ignition under strong fire source[J]. Safety in Coal Mines, 2015, 46(2): 158−160.
    [11]
    司荣军. 瓦斯浓度对爆炸传播影响的数值模拟研究[J]. 工业安全与环保,2011,37(4):29−30.

    SI Rongjun. Simulation research of gas concentration on explosion propagation[J]. Industrial Safety and Environmental Protection, 2011, 37(4): 29−30.
    [12]
    赵军凯,王磊,滑帅,等. 瓦斯浓度对瓦斯爆炸影响的数值模拟研究[J]. 矿业安全与环保,2012,39(4):1−4.

    ZHAO Junkai, WANG Lei, HUA Shuai, et al. Numerical simulation study on the influence of gas concentration on gas explosion[J]. Mining Safety & Environmental Protection, 2012, 39(4): 1−4.
    [13]
    蔺伟,回岩,王成,等. 瓦斯体积分数对火焰传播规律影响的实验研究[J]. 北京理工大学学报,2015,35(6):551−555.

    LIN Wei, HUI Yan, WANG Cheng, et al. Experimental investigation about the influence of gas concentration on flame propagation[J]. Transactions of Beijing Institute of Technology, 2015, 35(6): 551−555.
    [14]
    余明高,陈传东,王雪燕,等. 管道内瓦斯非均匀预混火焰传播特性实验研究[J]. 煤炭学报,2021,46(6):1781−1790.

    YU Minggao, CHEN Chuandong, WANG Xueyan, et al. Experimental study on combustion characteristics of non-uniform premixed gas within a pipeline[J]. Journal of China Coal Society, 2021, 46(6): 1781−1790.
    [15]
    李祥春,聂百胜,杨春丽,等. 封闭空间内瓦斯浓度对瓦斯爆炸反应动力学特性的影响[J]. 高压物理学报,2017,31(2):135−147.

    LI Xiangchun, NIE Baisheng, YANG Chunli, et al. Effect of gas concentration on kinetic characteristics of gas explosion in confined space[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 135−147.
    [16]
    贾泉升,司荣军,李润之,等. 定容条件下瓦斯爆炸超压及爆后气体成分试验研究[J]. 煤矿安全,2019,50(12):1−5.

    JIA Quansheng, SI Rongjun, LI Runzhi, et al. Experimental study on overpressure and gas composition after gases explosion under constant volume condition[J]. Safety in Coal Mines, 2019, 50(12): 1−5.
    [17]
    张莉聪,刘立萍,徐景德. 瓦斯煤尘爆炸火焰传播机理的实验测试系统研究[J]. 华北科技学院学报,2014,11(4):19−24.

    ZHANG Licong, LIU Liping, XU Jingde. Research on experiment test system of mechanism of fame propagation for gas and coal dust explosion[J]. Journal of North China Institute of Science and Technology, 2014, 11(4): 19−24.
  • Related Articles

    [1]TONG Linquan, XU Yang, WANG Xuetao, YANG Hanbin, MA Kui. CFD-DEM numerical study on coal dust pollution law of coal transfer point in underground coal mine[J]. Safety in Coal Mines, 2021, 52(5): 188-192,200.
    [2]XIANG Xiaogang, SUN Shaowei, ZHAO Meicheng, DENG Xiaoliang, LI Peng, XU Rui. Numerical simulation study on distribution law of respirable dust concentration and its relationship with turbulence intensity in fully mechanized mining face[J]. Safety in Coal Mines, 2021, 52(4): 13-19.
    [3]KONG Yang, PANG Haosheng, SONG Shuzheng, MENG Qunzhi. Numerical Simulation Study on Law of Dispersive Pollution of Dust in Fully Mechanized Mining Face[J]. Safety in Coal Mines, 2020, 51(6): 218-222.
    [4]LEI Meng. Study on Dust Migration Laws of Fully Mechanized Mining Face Based on Time Scale[J]. Safety in Coal Mines, 2019, 50(3): 185-188.
    [5]XU Shengdong, LI Dewen, CHEN Fang. Numerical Simulation on Distribution Laws of Air and Respirable Dust at Fully Mechanized Face with 8 m Mining Height[J]. Safety in Coal Mines, 2018, 49(12): 160-163,168.
    [6]DING Cui. Research Progress of Dust Movement and Diffusion Laws in Excavation Roadway[J]. Safety in Coal Mines, 2018, 49(9): 219-222,232.
    [7]ZHAO Leiyu, WEI Xiuye, LIU Qiuzu, WANG Xindong. CFD Simulations on Gas-particle Two Phase Flow of Dust Distribution[J]. Safety in Coal Mines, 2016, 47(1): 148-150.
    [8]BAI Ruonan, ZHANG Qi, YU Haiming, MA Xiao, CHEN Hongtao. Numerical Simulation Analysis of Dust Distribution Laws Affected by Wind Speed at Fully-mechanized Working Face[J]. Safety in Coal Mines, 2015, 46(9): 180-183.
    [9]MuLaLi?MaZhaFu, DING Yong-ming, CHEN Ju-shi. The Rule of Dust Concentration Distribution at Fully-mechanized Face in Xiaohonggou Coal Mine[J]. Safety in Coal Mines, 2013, 44(6): 165-167.
    [10]YAO Xi-wen, LU Guang-li. Numerical Simulation of Distribution Laws of Dust Concentration in Fully Mechanized Caving Face With High Inclination Angle[J]. Safety in Coal Mines, 2013, 44(2): 22-24,25.
  • Cited by

    Periodical cited type(7)

    1. 魏启明,胡亚军,张海龙,杨宗泉,王虎,刘玉德. 煤层群下煤层开采工作面矿压显现规律研究. 当代化工研究. 2025(01): 43-45 .
    2. 安伟岗,陆星,白贝贝. 煤矿综采工作面增面设备安装及施工技术研究. 设备管理与维修. 2025(04): 97-99 .
    3. 武瑞成. 厚煤层综放开采矿压显现异常治理研究. 内蒙古煤炭经济. 2024(04): 67-69 .
    4. 尚立斌. 阳泉矿区大埋深超长工作面装备适应性研究. 煤炭技术. 2024(06): 217-219 .
    5. 孙俊明,侯增平,徐宏强. 超长工作面液压支架关键参数设计及效益分析. 陕西煤炭. 2024(08): 72-77 .
    6. 李尚国. 超长工作面采空区分段阻隔自燃防治研究. 煤炭与化工. 2024(11): 121-124 .
    7. 薛丁才. 煤矿120210工作面矿压监测及采煤工艺优化分析. 山西冶金. 2024(11): 205-207 .

    Other cited types(1)

Catalog

    Article views (50) PDF downloads (10) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return