• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
LIU Xiaojuan, XU Guangquan, FU Xianjie, et al. Numerical simulation and discharge evaluation of Cenozoic “bottom aquifer” under drainage conditions[J]. Safety in Coal Mines, 2024, 55(4): 197−203. DOI: 10.13347/j.cnki.mkaq.20230642
Citation: LIU Xiaojuan, XU Guangquan, FU Xianjie, et al. Numerical simulation and discharge evaluation of Cenozoic “bottom aquifer” under drainage conditions[J]. Safety in Coal Mines, 2024, 55(4): 197−203. DOI: 10.13347/j.cnki.mkaq.20230642

Numerical simulation and discharge evaluation of Cenozoic “bottom aquifer” under drainage conditions

More Information
  • Received Date: May 11, 2023
  • Revised Date: June 16, 2023
  • Available Online: March 25, 2024
  • The coal seam mining in the east of China will cause the groundwater of the bottom aquifer of the Cenozoic (referred to as “bottom aquifer”) to indirectly recharge the sandstone aquifer under the bedrock surface, which will not only lead to ground settlement, but also increase the mine drainage. The drainage amount is indeed a certain basis for the prevention and control of mine water damage and the prediction of settlement amount. Taking Banji Mine in Huainan Coalfield as an example, a numerical model of “bottom aquifer” was constructed by analyzing the relationship between the sandstone aquifer of 9# coal roof and the overlying “bottom aquifer” recharge, its hydrogeological parameters were obtained, and its output was calculated and evaluated by water balance principle. The results show that the “bottom aquifer” in the study area can be divided into 5 hydrogeological unit blocks, the permeability coefficient is 0.433-0.824 m/d, the elastic water release rate is 1.8×10−6-3.6×10−6 m−1. Under the condition of sandstone water drainage, the “bottom aquifer” discharge at different stages accounts for about 1/4 of the total drainage water, and its sources are mainly lateral recharge and static reserve consumption. Therefore, through the grouting of weathering zone of bedrock, the hydraulic channel between the bottom and the roof of coal seam is an effective measure to control the recharge of sandstone water from the bottom water.

  • [1]
    葛晓光. 两淮煤田厚新生界底部含砾地层沉积物成因分析[J]. 煤炭学报,2000,25(3):225−229. doi: 10.3321/j.issn:0253-9993.2000.03.001

    GE Xiaoguang. Sediments of the bottom aquifer bearing gravel of thick cenozoic formation in Huaibei Huainan coalfield[J]. Journal of China Coal Society, 2000, 25(3): 225−229. doi: 10.3321/j.issn:0253-9993.2000.03.001
    [2]
    许光泉,严家平,桂和荣. 影响新生界“底含”发育的因素及含水层参数修正[J]. 煤田地质与勘探,2003,31(2):40−42. doi: 10.3969/j.issn.1001-1986.2003.02.013

    XU Guangquan, YAN Jiaping, GUI Herong. Affecting caenozoic the “fourth aquifer” development factors and its parameters revising[J]. Coal Geology & Exploration, 2003, 31(2): 40−42. doi: 10.3969/j.issn.1001-1986.2003.02.013
    [3]
    李定龙,周治安. 临涣矿区底含水化学特征及其形成作用探讨[J]. 煤田地质与勘探,1994(2):37−41.

    LI Dinglong, ZHOU Zhian. Hydrochemical characteristics of the floor aquifer in Linhuan mining area and their origin[J]. Coal Geology & Exploration, 1994(2): 37−41.
    [4]
    赵世军,鹿存金,边凯,等. 银星一号煤矿侏罗系煤层顶板砂岩水害特征及防治技术[J]. 煤矿安全,2022,53(12):76−84.

    ZHAO Shijun, LU Cunjin, BIAN Kai, et al. Water disaster characteristics and prevention technology of Jurassic coal seam roof sandstone in Yinxing No.1 coal mine[J]. Safety in Coal Mines, 2022, 53(12): 76−84.
    [5]
    靳德武,李超峰,刘英锋,等. 黄陇煤田煤层顶板水害特征及其防控技术[J]. 煤田地质与勘探,2023,51(1):205−213. doi: 10.12363/issn.1001-1986.22.10.0754

    JIN Dewu, LI Chaofeng, LIU Yingfeng, et al. Characteristics of roof water hazard of coal seam in Huanglong coalfield and key technologies for prevention and control[J]. Coal Geology & Exploration, 2023, 51(1): 205−213. doi: 10.12363/issn.1001-1986.22.10.0754
    [6]
    唐德才,李文平,武旭仁,等. 煤矿立井非采动破裂工程地质勘察方法[J]. 水文地质工程地质,2002(4):29−32. doi: 10.3969/j.issn.1000-3665.2002.04.009

    TANG Decai, LI Wenping, WU Xuren, et al. Engineering geological investigation method of non-mining rupture shaft lining of coal mine in thick deep soils[J]. Hydrogeology and Engineering Geology, 2002(4): 29−32. doi: 10.3969/j.issn.1000-3665.2002.04.009
    [7]
    黄晖,贾海宾,韩必武,等. 井筒非采动变形破坏附加应力影响因素分析[J]. 煤田地质与勘探,2014,42(1):40−44. doi: 10.3969/j.issn.1001-1986.2014.01.009

    HUANG Hui, JIA Haibin, HAN Biwu, et al. Analysis of influencing factors of additional stress of deformation and failure induced by non-mining disturbance in shaft[J]. Coal Geology & Exploration, 2014, 42(1): 40−44. doi: 10.3969/j.issn.1001-1986.2014.01.009
    [8]
    潘维强,张黎明,丛宇. 深厚松散地层泄压槽治理井筒破坏判据及其与地下水水位关系[J]. 吉林大学学报(地球科学版),2021,51(5):1578−1586.

    PAN Weiqiang, ZHANG Liming, CONG Yu. Relationship between shaft failure with stress-relief groove and groundwater level in thick loose strata[J]. Journal of Jilin University(Earth Science Edition), 2021, 51(5): 1578−1586.
    [9]
    张培森,李复兴,付翔,等. 祁东煤矿构造控水特征和地下水运移规律[J]. 煤炭科学技术,2023,51(2):292−305.

    ZHANG Peisen, LI Fuxing, FU Xiang, et al. Characteristics of structural water control and groundwater migration in Qidong coal mine[J]. Coal Science and Technology, 2023, 51(2): 292−305.
    [10]
    刘环宇,王思敬,曾钱帮,等. 基于模糊神经网络兖州矿区立井井筒非采动破裂的判别[J]. 岩土工程学报,2005(10):1237−1240. doi: 10.3321/j.issn:1000-4548.2005.10.027

    LIU Huanyu, WANG Sijing, ZENG Qianbang, et al. Judgment for non-mining fracture of shaft-lining in Yanzhou mine based on fuzzy neural network[J]. Chinese Journal of Geotechnical Engineering, 2005(10): 1237−1240. doi: 10.3321/j.issn:1000-4548.2005.10.027
    [11]
    刘环宇,王思敬,曾钱帮,等. 煤矿立井井筒非采动破裂的人工神经网络预测[J]. 水文地质工程地质,2005(2):65−67. doi: 10.3969/j.issn.1000-3665.2005.02.014

    LIU Huanyu, WANG Sijing, ZENG Qianbang, et al. An artificial neural network forecast model for shaft lining non-mining fracture[J]. Hydrogeology and Engineering Geology, 2005(2): 65−67. doi: 10.3969/j.issn.1000-3665.2005.02.014
    [12]
    朱冠宇,姜波,朱慎刚. 朱仙庄煤矿“五含”水文地质特征及水害防治对策[J]. 煤田地质与勘探,2018,46(2):111−117. doi: 10.3969/j.issn.1001-1986.2018.02.017

    ZHU Guanyu, JIANG Bo, ZHU Shengang. Hydrogeological characteristics and prevention countermeasures of “fifth aquifer” in Zhuxianzhuang coal mine[J]. Coal Geology & Exploration, 2018, 46(2): 111−117. doi: 10.3969/j.issn.1001-1986.2018.02.017
    [13]
    刘德民,顾爱民,闫凯迪. 基于水力学与水化学耦合的矿井涌(突)水水源识别方法研究[J]. 煤炭工程,2023,55(1):87−93.

    LIU Deming, GU Aiming, YAN Kaidi. Source discrimination method of mine water inflow based on the coupling of hydraulics and hydrochemistry[J]. Coal Engineering, 2023, 55(1): 87−93.
    [14]
    许延春,张旗,谢进国,等. 徐庄煤矿7199综放工作面突水分析[J]. 辽宁工程技术大学学报(自然科学版),2015,34(2):145−149.

    XU Yanchun, ZHANG Qi, XIE Jinguo, et al. Water inrush analysis of 7199 fully mechanized working face in Xuzhuang coal mine[J]. Journal of Liaoning Technical University(Natural Science), 2015, 34(2): 145−149.
    [15]
    刘鑫,陈陆望,林曼利,等. 采动影响下矿井突水水源Fisher判别与地下水补给关系反演[J]. 水文地质工程地质,2013,40(4):36−43.

    LIU Xin, CHEN Luwang, LIN Manli, et al. Fisher discriminant analysis for coal mining inrush water source under mining-induced disturbance and inversion of groundwater recharge relation[J]. Hydrogeology & Engineering Geology, 2013, 40(4): 36−43.
    [16]
    雷崇利,常青,李炳宏. 煤层上覆含水层受采煤影响的区带划分[J]. 中国地质灾害与防治学报,2013,24(1):56−59.

    LEI Chongli, CHANG Qing, LI Binghong. Dividing different affected range of cover aquifer in coa mine[J]. The Chinese Journal of Geological Hazard and Control, 2013, 24(1): 56−59.
    [17]
    陈陆望,彭智宏,王迎新,等. 松散承压含水层渗透系数变化规律与估算模型研究[J]. 煤田地质与勘探,2021,49(1):189−197. doi: 10.3969/j.issn.1001-1986.2021.01.020

    CHEN Luwang, PENG Zhihong, WANG Yingxin, et al. Variation law and estimation model of permeability coefficient in unconsolidated cinfined aquifer[J]. Coal Geology & Exploration, 2021, 49(1): 189−197. doi: 10.3969/j.issn.1001-1986.2021.01.020
    [18]
    韦华鹏,罗奇斌,康卫东,等. 基于不同开采方式的煤矿涌水量预测及其环境影响分析[J]. 水文地质工程地质,2023,50(1):21−31.

    WEI Huapeng, LUO Qibin, KANG Weidong, et al. Prediction of coal mine water inflow by different mining methods and environment impact analyses[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 21−31.
  • Related Articles

    [1]YANG Jian, SUN Jie, LIANG Xiangyang, HUANG Hao, WANG Qiangmin. Roof Water Pre-discharge Feasibility and Standard of Deep Buried Coal Seam Working Face in Mengshan Mining Area[J]. Safety in Coal Mines, 2020, 51(2): 46-50.
    [2]PENG Ran. Study on Key Parameters of Carbon Dioxide Fracturer During Energy Discharge[J]. Safety in Coal Mines, 2018, 49(12): 31-34.
    [3]LIU Chunfeng, YANG Lingxiao. Application of Qrifice Plate Flowmeter in Coal Mine Gas Drainage Measurement and Analysis of Common Problems[J]. Safety in Coal Mines, 2017, 48(11): 175-178.
    [4]ZHAO Hongze, HE Qiao, WEI Zhao, ZHOU Lilin, FAN Yanqiang, DU Yongzheng. Research on Performance Evaluation of Coal Mine Safety Hidden Investigation Based on the Whole Process[J]. Safety in Coal Mines, 2016, 47(12): 230-233.
    [5]CHENG Zhiyu, FANG Zhao, XIAN Yang, GUO Yanmin, CAI Wentao, JIAO Yanhui. Application of Remote Cold Discharge Device for Backup Power in Changchun Coal Mine[J]. Safety in Coal Mines, 2015, 46(6): 115-117.
    [6]WANG Jinfeng, SHENG Xuyang, ZHAI Xueqi, FENG Lijie. Capability Evaluation of Coal Mine Disaster Emergency Logistics Based on Rough Set and Support Vector Machine[J]. Safety in Coal Mines, 2014, 45(11): 237-239.
    [7]JIAO Yang. Underground Recharge Runoff Discharge Characteristics and Aquifuge Characteristics at Ordovician Limestone Top of Chengzhuang Mine Field[J]. Safety in Coal Mines, 2014, 45(10): 24-27.
    [8]ZHANG Taotao, XUE Ye. The Disaster Risk Index System of Coal Mine Gas Explosion Based on Rough Set Attribute Reduction Method[J]. Safety in Coal Mines, 2014, 45(1): 136-139.
    [9]WANG Jing-Hao, FENG Li-Guo. Over-discharge Protection of Lead-acid Battery in Mine Back-up Power[J]. Safety in Coal Mines, 2012, 43(8): 121-122.
    [10]ZHOU Wei-feng. Structure Form and Testing of Mine Breathing and Discharge Fluid Ex component[J]. Safety in Coal Mines, 2012, 43(7): 104-106.

Catalog

    Article views (31) PDF downloads (7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return