• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
LI Bing, ZHAO Haifeng, MENG Lingpeng, et al. Optimization and application of hydraulic fracture propagation in carbonaceous and siliceous shales of marine-continental transition facies[J]. Safety in Coal Mines, 2025, 56(3): 32−43. DOI: 10.13347/j.cnki.mkaq.20230606
Citation: LI Bing, ZHAO Haifeng, MENG Lingpeng, et al. Optimization and application of hydraulic fracture propagation in carbonaceous and siliceous shales of marine-continental transition facies[J]. Safety in Coal Mines, 2025, 56(3): 32−43. DOI: 10.13347/j.cnki.mkaq.20230606

Optimization and application of hydraulic fracture propagation in carbonaceous and siliceous shales of marine-continental transition facies

More Information
  • Received Date: May 04, 2023
  • Revised Date: August 20, 2023
  • Aiming at the differences in mechanical properties of carbonaceous and siliceous shale rocks in transitional facies, a hydraulic fracturing model was established using the finite element ABAQUS numerical simulation software. The influence of lithological differences and fracturing parameters on the characteristics of hydraulic fracture propagation was analyzed, and the optimal number and spacing of carbonaceous and siliceous shale hydraulic fracturing clusters were optimized by introducing fracturing index. The results show that: the hydraulic fracture length of carbonaceous shale is shorter than that of siliceous shale, while the fracture width is wider than that of siliceous shale. The siliceous shale has strong brittleness and strong resistance to deformation, forming long and narrow hydraulic fractures with a large sweeping range; the initiation pressure of hydraulic fractures in carbonaceous shale is small, and the propagation pressure is higher than the initiation pressure. On the other hand, the hydraulic fracture initiation pressure of siliceous shale is higher, but there will be a significant pressure drop after the initiation of the fracture, which proves that siliceous shale is easier to fracturing and requires less fracturing fluid volume; the optimal number of clusters and the cluster spacing of carbonaceous shale are optimized by fracturing index as 12 clusters and 11 m cluster spacing, and the optimal inter-cluster and cluster spacing of siliceous shale are 13 clusters and 9 m cluster spacing. It is suggested that “small number of clusters with large cluster spacing” is easy to be used for on-site hydraulic fracturing of carbonaceous shale, and “multiple clusters with small cluster spacing” for siliceous shale fracturing; under the fracturing parameters with a larger fracturing index, the daily gas production is also larger, and the daily gas production of the optimal fracturing parameters coincides with the daily gas production trend of the same fracturing parameters on site at 97%.

  • [1]
    邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发,2015,42(6):689−701.

    ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects(Ⅰ)[J]. Petroleum Exploration and Development, 2015, 42(6): 689−701.
    [2]
    赵金洲,王松,李勇明. 页岩气藏压裂改造难点与技术关键[J]. 天然气工业,2012,32(4):46−49.

    ZHAO Jinzhou, WANG Song, LI Yongming. Difficulties and key techniques in the fracturing treatment of shale gas reservoirs[J]. Natural Gas Industry, 2012, 32(4): 46−49.
    [3]
    王红岩,刘德勋,蔚远江,等. 大面积高丰度海相页岩气富集理论及地质评价技术进展与应用[J]. 煤田地质与勘探,2022,50(3):69−81. doi: 10.12363/issn.1001-1986.21.12.0824

    WANG Hongyan, LIU Dexun, YU Yuanjiang, et al. Enrichment theory of large area and high abundance marine shale gas and its geological evaluation technology progress and application[J]. Coal Geology & Exploration, 2022, 50(3): 69−81. doi: 10.12363/issn.1001-1986.21.12.0824
    [4]
    王宁,李荣西,王香增,等. 鄂尔多斯盆地山西组海陆过渡相页岩生烃动力学及页岩气形成过程研究[J]. 地球化学,2019,48(5):493−501.

    WANG Ning, LI Rongxi, WANG Xiangzeng, et al. Generation kinetics and generation process of transitional facies shale gas for Shanxi Formation in Ordos Basin[J]. Geochimica, 2019, 48(5): 493−501.
    [5]
    匡立春,董大忠,何文渊,等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J]. 石油勘探与开发,2020,47(3):435−446.

    KUANG Lichun, DONG Dazhong, HE Wenyuan, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 435−446.
    [6]
    武瑾,王红岩,施振生,等. 海陆过渡相黑色页岩优势岩相类型及成因机制—以鄂尔多斯盆地东缘二叠系山西组为例[J]. 石油勘探与开发,2021,48(6):1137−1149. doi: 10.11698/PED.2021.06.06

    WU Jin, WANG Hongyan, SHI Zhensheng, et al. Favorable lithofacies types and genesis of marine-continental transitional black shale: A case study of Permian Shanxi formation in the eastern margin of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(6): 1137−1149. doi: 10.11698/PED.2021.06.06
    [7]
    刘峻杰,吴建军,熊健,等. 海陆过渡相不同页岩岩相的岩石力学特性及能量演化特征[J]. 特种油气藏,2022,29(6):83−90.

    LIU Junjie, WU Jianjun, XIONG Jian, et al. Rock mechanical properties and energy evolution characteristics of different shale lithofacies in marine-continental transition facies[J]. Special Oil & Gas Reservoirs, 2022, 29(6): 83−90.
    [8]
    杨才,冯岩,白灵麒,等. 鄂尔多斯盆地北部太原组海陆过渡相页岩孔缝特征及油气地质意义[J]. 地质与资源,2018,27(4):389−395.

    YANG Cai, FENG Yan, BAI Lingqi, et al. Pore-fracture features of the marine-continental transition shales from Taiyuan formation in northern Ordos basin and petroleum geological implication[J]. Geology and Resources, 2018, 27(4): 389−395.
    [9]
    张景,虎丹丹,覃建华,等. 玛湖砾岩油藏水平井效益开发压裂关键参数优化[J]. 新疆石油地质,2023,44(2):184−194.

    ZHANG Jing, HU Dandan, QIN Jianhua, et al. Optimization of key fracturing parameters for profitable development of horizontal wells in Mahu conglomerate reservoirs[J]. Xinjiang Petroleum Geology, 2023, 44(2): 184−194.
    [10]
    高德利,毕延森,鲜保安. 中国煤层气高效开发井型与钻完井技术进展[J]. 天然气工业,2022,42(6):1−18.

    GAO Deli, BI Yansen, XIAN Baoan. Technical advances in well types and drilling & completion for high-efficient development of coalbed methane in China[J]. Natural Gas Industry, 2022, 42(6): 1−18.
    [11]
    CHEN X Y, LI Y M, ZHAO J Z, et al. Numerical investigation for simultaneous growth of hydraulic fractures in multiple horizontal wells[J]. Journal of Natural Gas Science and Engineering, 2018, 51: 44−52. doi: 10.1016/j.jngse.2017.12.014
    [12]
    黄中伟,李志军,李根生,等. 煤层气水平井定向喷射防砂压裂技术及应用[J]. 煤炭学报,2022,47(7):2687−2697.

    HUANG Zhongwei, LI Zhijun, LI Gensheng, et al. Oriented and sand control hydra-jet fracturing in coalbed methane horizontal wells and field applications[J]. Journal of China Coal Society, 2022, 47(7): 2687−2697.
    [13]
    张红杰,刘欣佳,张潇,等. 煤系储层综合开发中的压裂射孔方案优化研究[J]. 特种油气藏,2021,28(1):154−160.

    ZHANG Hongjie, LIU Xinjia, ZHANG Xiao, et al. Study on the optimization of the fracturing perforation scheme in the comprehensive development of coal-bearing reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 154−160.
    [14]
    陈珂,于志豪,王守毅,等. 断层附近非均匀应力场页岩压裂缝网扩展模拟[J]. 断块油气田,2023,30(2):213−221.

    CHEN Ke, YU Zhihao, WANG Shouyi, et al. Shale fracture network propagation simulation in non-uniform stress field near fault[J]. Fault-Block Oil & Gas Field, 2023, 30(2): 213−221.
    [15]
    ZHAO H F, WEI Y G. Determination of interface properties between micron-thick metal film and ceramic substrate using peel test[J]. International Journal of Fracture, 2007, 144(2): 103−112. doi: 10.1007/s10704-007-9083-4
    [16]
    WU K, OLSON J E. Mechanisms of simultaneous hydraulic-fracture propagation from multiple perforation clusters in horizontal wells[J]. SPE Journal, 2016, 21(3): 1000−1008. doi: 10.2118/178925-PA
    [17]
    LIU N Z, ZHANG Z P, ZOU Y S, et al. Propagation law of hydraulic fractures during multi-staged horizontal well fracturing in a tight reservoir[J]. Petroleum Exploration and Development, 2018, 45(6): 1129−1138. doi: 10.1016/S1876-3804(18)30116-2
    [18]
    刘志帆,刘志强,施安峰,等. 水平井水力压裂影响参数的数值模拟[J]. 地球科学,2017,42(8):1394−1402.

    LIU Zhifan, LIU Zhiqiang, SHI Anfeng, et al. Numerical simulation on influence parameters of horizontal well hydraulic fracturing[J]. Earth Science, 2017, 42(8): 1394−1402.
    [19]
    赵金洲,陈曦宇,刘长宇,等. 水平井分段多簇压裂缝间干扰影响分析[J]. 天然气地球科学,2015,26(3):533−538.

    ZHAO Jinzhou, CHEN Xiyu, LIU Changyu, et al. The analysis of crack interaction in multi-stage horizontal fracturing[J]. Natural Gas Geoscience, 2015, 26(3): 533−538.
    [20]
    ZHAO H F, LIU C S, XIONG Y G, et al. Experimental research on hydraulic fracture propagation in group of thin coal seams[J]. Journal of Natural Gas Science and Engineering, 2022, 103: 104614. doi: 10.1016/j.jngse.2022.104614
    [21]
    潘林华,张士诚,程礼军,等. 水平井“多段分簇” 压裂簇间干扰的数值模拟[J]. 天然气工业,2014,34(1):74−79.

    PAN Linhua, ZHANG Shicheng, CHENG Lijun, et al. A numerical simulation of the inter-cluster interference in multi-cluster staged fracking for horizontal wells[J]. Natural Gas Industry, 2014, 34(1): 74−79.
    [22]
    王小华,罗浩然,张丰收. 水平井射孔压裂完井下控制近井筒裂缝复杂度的参数优化[J]. 岩石力学与工程学报,2022,41(6):1223−1234.

    WANG Xiaohua, LUO Haoran, ZHANG Fengshou. Parameter optimization for controlling the complexity of near-wellbore fractures for perforated fracturing of horizontal wells[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(6): 1223−1234.
    [23]
    刘向君,王小军,赵保伟,等. 砂砾岩储集层水力压裂裂缝扩展规律与可压性评价[J]. 新疆石油地质,2023,44(2):169−177.

    LIU Xiangjun, WANG Xiaojun, ZHAO Baowei, et al. Propagation of hydraulic fractures and fracability evaluation of sandy conglomerate reservoirs[J]. Xinjiang Petroleum Geology, 2023, 44(2): 169−177.
    [24]
    赵海峰,陈勉,金衍. 水力裂缝在地层界面的扩展行为[J]. 石油学报,2009,30(3):450−454. doi: 10.7623/syxb200903025

    ZHAO Haifeng, CHEN Mian, JIN Yan. Extending behavior of hydraulic fracture on formation interface[J]. Acta Petrolei Sinica, 2009, 30(3): 450−454. doi: 10.7623/syxb200903025
    [25]
    陈旻炜,李敏,陈伟民. 水平井多裂纹同步扩展的偏折分析[J]. 北京航空航天大学学报,2019,45(1):99−108.

    CHEN Minwei, LI Min, CHEN Weimin. Deflection of multi-crack synchronous propagation in horizontal well[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 99−108.
    [26]
    OLSON J E, DAHI-TALEGHANI A. Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures[C]//All Days. SPE, 2009: 726−732.
    [27]
    ZHAO H F, WANG X H, LIU Z Y. Experimental investigation of hydraulic sand fracturing on fracture propagation under the influence of coal macrolithotypes in Hancheng block, China[J]. Journal of Petroleum Science and Engineering, 2019, 175: 60−71. doi: 10.1016/j.petrol.2018.12.031
    [28]
    CHEN M, ZHANG S C, XU Y, et al. A numerical method for simulating planar 3D multi-fracture propagation in multi-stage fracturing of horizontal wells[J]. Petroleum Exploration and Development, 2020, 47(1): 171−183. doi: 10.1016/S1876-3804(20)60016-7
    [29]
    李国欣,刘国强,侯雨庭,等. 陆相页岩油有利岩相优选与压裂参数优化方法[J]. 石油学报,2021,42(11):1405−1416. doi: 10.7623/syxb202111001

    LI Guoxin, LIU Guoqiang, HOU Yuting, et al. Optimization method of favorable lithofacies and fracturing parameter for continental shale oil[J]. Acta Petrolei Sinica, 2021, 42(11): 1405−1416. doi: 10.7623/syxb202111001
    [30]
    蒋海,肖阳,王栋,等. 页岩气体积改造人工缝网优化设计[J]. 特种油气藏,2022,29(5):154−160.

    JIANG Hai, XIAO Yang, WANG Dong, et al. Optimal design of artificial fracture network for shale gas volume stimulation[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 154−160.
    [31]
    尚立涛,刘宇,张杨,等. 致密火山岩储层水平井压裂参数优化与现场试验[J]. 石油地质与工程,2021,35(2):98−102.

    SHANG Litao, LIU Yu, ZHANG Yang, et al. Fracturing parameter optimization and field test of horizontal wells in tight volcanic reservoirs[J]. Petroleum Geology and Engineering, 2021, 35(2): 98−102.
    [32]
    李宗源,倪小明,石延霞,等. 马必东区块水力喷射分段压裂工艺优化与应用[J]. 煤矿安全,2021,52(12):78−83.

    LI Zongyuan, NI Xiaoming, SHI Yanxia, et al. Optimization and application of hydraulic injection segmental fracturing process in Mabidong Block[J]. Safety in Coal Mines, 2021, 52(12): 78−83.

Catalog

    Article views (10) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return