Citation: | DONG Yi, YANG Chuang. Study on wavelet denoising effect of transient electromagnetic method based on optimal threshold reference[J]. Safety in Coal Mines, 2024, 55(1): 185−191. DOI: 10.13347/j.cnki.mkaq.20230423 |
The field data acquisition of transient electromagnetic method is prone to jump due to various random disturbances. Wavelet denoising realizes data denoising by multi-scale decomposition, threshold setting and reconstruction of signal. In order to improve the data quality of TEM after wavelet denoising, a new wavelet denoising method based on the optimal threshold reference is proposed to improve the threshold selection method. Combined with the application of transient electromagnetic method in water-rich engineering, the noise reduction results of data under different threshold conditions are compared and analyzed, and the practical application effect of the proposed algorithm is discussed. The results show that the proposed method can further reduce the value of the induced electromotive force curve in the range of 1-4 ms, and make the whole period attenuation characteristics of the data more obvious. The smoke ring inversion results of the denoised data were analyzed, and three locations with relatively large electrical differences were explained, and the inversion results of the denoised data based on the optimal threshold reference were verified to be more accurate.
[1] |
武欣,潘冬明,于景邨. 煤矿采空区地球物理探测方法综述[J]. 地球物理学进展,2022,37(3):1197−1206. doi: 10.6038/pg2022GG0128
WU Xin, PAN Dongming, YU Jingcun. Review in the geophysical methods for coal mine goaf prospecting[J]. Progress in Geophysics, 2022, 37(3): 1197−1206. doi: 10.6038/pg2022GG0128
|
[2] |
解海军,栗升,李静蕊,等. 瞬变电磁资料处理中干扰压制的滤波技术对比分析[J]. 中国矿业,2019,28(12):82−87. doi: 10.12075/j.issn.1004-4051.2019.12.007
XIE Haijun, LI Sheng, LI Jingrui, et al. Comparative analysis of filtering technique in TEM data processing noise suppression[J]. China Mining Magazine, 2019, 28(12): 82−87. doi: 10.12075/j.issn.1004-4051.2019.12.007
|
[3] |
李肃义,林君,阳贵红,等. 电性源时域地空电磁数据小波去噪方法研究[J]. 地球物理学报,2013,56(9):3145−3152. doi: 10.6038/cjg20130927
LI Suyi, LIN Jun, YANG Guihong, et al. Ground-Airborne electromagnetic signals de-noising using a combined wavelet transform algorithm[J]. Chinese Journal of Geophysics, 2013, 56(9): 3145−3152. doi: 10.6038/cjg20130927
|
[4] |
毛鑫鑫,毛立峰,杨聪,等. 半航空瞬变电磁数据小波降噪方法研究[J]. 地球物理学进展,2021,36(3):1287−1296. doi: 10.6038/pg2021EE0157
MAO Xinxin, MAO Lifeng, YANG Cong, et al. Research on wavelet denoising method for semi-airborne transient electromagnetic data[J]. Progress in Geophysics, 2021, 36(3): 1287−1296. doi: 10.6038/pg2021EE0157
|
[5] |
解海军,李静蕊,董毅,等. 小波基和阈值参数对瞬变电磁信号去噪效果影响[J]. 西安科技大学学报,2020,40(4):682−690. doi: 10.13800/j.cnki.xakjdxxb.2020.0416
XIE Haijun, LI Jingrui, DONG Yi, et al. Influence of wavelet base and threshold parameters on de-noising effect of transient electromagnetic signal[J]. Journal of Xi'an University of Science and Technology, 2020, 40(4): 682−690. doi: 10.13800/j.cnki.xakjdxxb.2020.0416
|
[6] |
樊鑫,程建远,王云宏,等. 基于小波散射分解变换的煤矿微震信号智能识别[J]. 煤炭学报,2022,47(7):2722−2731.
FAN Xin, CHENG Jianyuan, WANG Yunhong, et al. Intelligent recognition of coal mine microseismic signal based on wavelet scattering decomposition transform[J]. Journal of China Coal Society, 2022, 47(7): 2722−2731.
|
[7] |
陈泽,丁琳琳,罗浩,等. 基于改进小波分解和ELM的矿山微震事件识别方法[J]. 煤炭学报,2020,45(S2):637−648. doi: 10.13225/j.cnki.jccs.2020.0373
CHEN Ze, DING Linlin, LUO Hao, et al. Mine microseismic events classification based on improved wavelet decomposition and ELM[J]. Journal of China Coal Society, 2020, 45(S2): 637−648. doi: 10.13225/j.cnki.jccs.2020.0373
|
[8] |
张军,张涛,王信文. 巷道围岩低阻体矿井音频电透视探测校正方法研究[J]. 煤炭科学技术,2020,48(11):182−190. doi: 10.13199/j.cnki.cst.2020.11.023
ZHANG Jun, ZHANG Tao, WANG Xinwen. Research on correction method of audio frequency electric perspective detection for low resistivity body in surrounding rock of roadway[J]. Coal Science and Technology, 2020, 48(11): 182−190. doi: 10.13199/j.cnki.cst.2020.11.023
|
[9] |
欧卫红,万里勇. 双密度复小波与系数相关性的红外图像去噪[J]. 光学技术,2023,49(2):238−244. doi: 10.13741/j.cnki.11-1879/o4.2023.02.019
OU Weihong, WAN Liyong. Infrared image denoising based on dual density complex wavelet and coefficient correlation[J]. Optical Technique, 2023, 49(2): 238−244. doi: 10.13741/j.cnki.11-1879/o4.2023.02.019
|
[10] |
程铁栋,吴义文,戴聪聪,等. 岩石破坏全过程声发射信号去噪及特征提取方法研究[J]. 煤炭科学技术,2019,47(12):24−31. doi: 10.13199/j.cnki.cst.2019.12.004
CHENG Tiedong, WU Yiwen, DAI Congcong, et al. Study on method of acoustic emission signal denoising and feature extraction in whole process of rock failure[J]. Coal Science and Technology, 2019, 47(12): 24−31. doi: 10.13199/j.cnki.cst.2019.12.004
|
[11] |
张刚,庹先国,王绪本,等. 不同参数条件下远参考大地电磁处理效果对比分析[J]. 地球物理学进展,2016,31(6):2458−2466. doi: 10.6038/pg20160614
ZHANG Gang, TUO Xianguo, WANG Xuben, et al. Analysis on remote reference magnetotelluric effect under different parameters[J]. Progress in Geophysics, 2016, 31(6): 2458−2466. doi: 10.6038/pg20160614
|
[12] |
田少兵,刘必良,梅荣,等. 东部沿海低阻区大地电磁测深远参考试验研究[J]. 地球物理学进展,2022,37(1):430−4420. doi: 10.6038/pg2022FF0032
TIAN Shaobing, LIU Biliang, MEI Rong, et al. Study on the application of remote reference magnetotelluric sounding technique in low resistance area of east coast of China[J]. Progress in Geophysics, 2022, 37(1): 430−4420. doi: 10.6038/pg2022FF0032
|
[13] |
王彦青,魏连鑫. 一种改进的小波阈值去噪方法[J]. 上海理工大学学报,2011,33(4):405−408. doi: 10.3969/j.issn.1007-6735.2011.04.018
WANG Yanqing, WEI Lianxin. Analysis on modified wavelet threshold de-noising functions[J]. Journal of University of Shanghai for Science and Technology, 2011, 33(4): 405−408. doi: 10.3969/j.issn.1007-6735.2011.04.018
|
[14] |
解海军,颜羽,董毅. 混合小波去噪在瞬变电磁资料处理中的应用[J]. 黑龙江科技大学学报,2016,26(6):687−690.
XIE Haijun, YAN Yu, DONG Yi. Application of mixed wavelet denoising method in TEM data processing[J]. Journal of Heilongjiang University of Science & Technology, 2016, 26(6): 687−690.
|
[15] |
王鹏飞,王书明,安永宁. 不规则回线瞬变电磁法一维烟圈反演研究[J]. 地球物理学进展,2019,34(3):1113−1120. doi: 10.6038/pg2019CC0138
WANG Pengfei, WANG Shuming, AN Yongning. One-dimensional smoke ring inversion of irregular loop source transient electromagnetic method[J]. Progress in Geophysics, 2019, 34(3): 1113−1120. doi: 10.6038/pg2019CC0138
|