JING Laiwang, FANG Xu, XIAO Qihui, et al. Study on damage of coal seam roof by stress potential function of stacked beam containing frictional action[J]. Safety in Coal Mines, 2023, 54(9): 112−118. DOI: 10.13347/j.cnki.mkaq.2023.09.016
    Citation: JING Laiwang, FANG Xu, XIAO Qihui, et al. Study on damage of coal seam roof by stress potential function of stacked beam containing frictional action[J]. Safety in Coal Mines, 2023, 54(9): 112−118. DOI: 10.13347/j.cnki.mkaq.2023.09.016

    Study on damage of coal seam roof by stress potential function of stacked beam containing frictional action

    More Information
    • Received Date: June 23, 2022
    • Available Online: September 24, 2023
    • In order to study the damage form and mechanism of coal mine roof, the stress distribution state in the stacked beam model was analyzed by using the stacked beam model and introducing the stress potential function; the model was simplified by using horizontal and vertical joints all over, and the damage range of coal seam roof was analyzed by combining Mohr-Coulomb strength criterion. The results show that the main factors of coal seam roof damage are layer separation caused by horizontal joints and fractures caused by vertical joints; the separation failure zone has a “hyperbolic-like” distribution with steep top and flat bottom, and the fracture damage zone has an “arch-shaped” distribution; with the increase of inter-bed friction coefficient with the increase of the interlayer friction coefficient, the height and width of the layer separation damage zone of the top plate decrease significantly, while the increase of the elastic modulus has less effect on the damage range of the top plate; meanwhile, with the increase of the indirect roof, the fracture height of the top plate gradually decreases and the layer separation width gradually increases.

    • [1]
      王楠,郑上上,李珊珊,等. 急倾斜煤层端面顶板稳定性分析[J]. 煤矿安全,2019(6):235−239. doi: 10.13347/j.cnki.mkaq.2019.06.057

      WANG Nan, ZHENG Shangshang, LI Shanshan, et al. Stability analysis of end face roof of steep inclined coal seam[J]. Safety in Coal Mines, 2019(6): 235−239. doi: 10.13347/j.cnki.mkaq.2019.06.057
      [2]
      左建平,孙运江,钱鸣高. 厚松散层覆岩移动机理及“类双曲线”模型[J]. 煤炭学报,2017,42(6):1372−1379.

      ZUO Jianping, SUN Yunjiang, QIAN Minggao. Movement mechanism and analogous hyperbola model of overlying strata with thick alluvium[J]. Journal of China Coal Society, 2017, 42(6): 1372−1379.
      [3]
      左建平,吴根水,孙运江,等. 岩层移动内外“类双曲线”整体模型研究[J]. 煤炭学报,2021,46(2):333−343.

      ZUO Jianping, WU Genshui, SUN Yunjiang, et al. Investigation on the inner and outer analogous hyperbola model (AHM) of strata movement[J]. Journal of China Coal Society, 2021, 46(2): 333−343.
      [4]
      左建平,孙运江,王金涛,等. 充分采动覆岩“类双曲线”破坏移动机理及模拟分析[J]. 采矿与安全工程学报,2018,35(1):71−77.

      ZUO Jianping, SUN Yunjiang, WANG Jintao, et al. Mechanical and numerical analysis of “analogous hyperbola” movement of overlying strata after full mining extraction[J]. Journal of Mining & Safety Engineering, 2018, 35(1): 71−77.
      [5]
      孟浩. 大采高工作面顶板结构分析与支架工作阻力确定[J]. 煤矿安全,2021,52(10):177−182.

      MENG Hao. Analysis of roof structure and determination of support working resistance in large mining height workface[J]. Safety in Coal Mines, 2021, 52(10): 177−182.
      [6]
      冯国瑞,任亚峰,王鲜霞,等. 白家庄煤矿垮落法残采区上行开采相似模拟实验研究[J]. 煤炭学报,2011,36(4):544−550.

      FENG Guorui, REN Yafeng, WANG Xianxia, et al. Experimental study on the upward mining of the left-over coal above gob area mined with caving method in Baijiazhuang Coal Mine[J]. Journal of China Coal Society, 2011, 36(4): 544−550.
      [7]
      冯国瑞,闫旭,王鲜霞,等. 上行开采层间岩层控制的关键位置判定[J]. 岩石力学与工程学报,2009,28(S2):3721−3726.

      FENG Guorui, YAN Xu, WANG Xianxia, et al. Determination of key positions of strata controlling in rocks between coal seams for upward minig[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 3721−3726.
      [8]
      冯国瑞,王鲜霞,康立勋. 采场上覆岩层面接触块体结构的力学机理分析[J]. 煤炭学报,2008,33(1):33−37.

      FENG Guorui, WANG Xianxia, KANG Lixun. Analysis on the mechanism of the face-contacted blocks structure in overlying strata above the longwall face[J]. Journal of China Coal Society, 2008, 33(1): 33−37.
      [9]
      王家臣,杨胜利,李良晖. 急倾斜煤层水平分段综放顶板“倾倒-滑塌”破坏模式[J]. 中国矿业大学学报,2018,47(6):1175−1184.

      WANG Jiachen, YANG Shengli, LI Lianghui. Toppling-slumping failure mode in horizontal sublevel top-coal caving face in steeply-inclined seam[J]. Journal of China University of Mining & Technology, 2018, 47(6): 1175−1184.
      [10]
      杜华溢,司艳龙,李春元,等. 非均匀应力影响下巷道顶板破坏特征研究[J]. 煤炭科学技术,2019,47(5):101−106.

      DU Huayi, SI Yanlong, LI Chunyuan, et al. Study on roof failure characteristics of roadway under non-uniform stress[J]. Coal Science and Technology, 2019, 47(5): 101−106.
      [11]
      张锋,李永恩,郭志强,等. 采动巷道软弱顶板塑性破坏演化规律与支护方案[J]. 煤炭科学技术,2021,49(7):24−30.

      ZHANG Feng, LI Yongen, GUO Zhiqiang, et al. Evolution law and control method of plastic zone in soft weak roof of mining roadway[J]. Coal Science and Technology, 2021, 49(7): 24−30.
      [12]
      贾栋,姜德义,陈结,等. 综放工作面覆岩破坏特征及裂隙演化相似模拟试验研究[J]. 中国安全生产科学技术,2022,18(3):19−25.

      JIA Dong, JIANG Deyi, CHEN Jie, et al. Similar simulation study on failure characteristics and fracture evolution of overlying strata in fully- mechanized caving face[J]. Journal of Safety Science and Technology, 2022, 18(3): 19−25.
      [13]
      熊祖强,王晓蕾. 复合顶板综放面覆岩破坏及裂隙演化相似模拟试验[J]. 中国安全生产科学技术,2014,10(10):22−28.

      XIONG Zuqiang, WANG Xiaolei. Similarity simulation test on overburden failure and cracks evolution under conditions of compound roof in full-mechanized top coal caving faces[J]. Journal of Safety Science and Technology, 2014, 10(10): 22−28.
      [14]
      池小楼, 杨科, 刘文杰, 等. 大倾角煤层分层综采再生顶板破断规律研究[J]. 岩土力学, 43(5): 1391-1400.

      CHI Xiaolou, YANG Ke, LIU Wenjie, et al. Study of caving pattern of regenerated roof in fully-mechanized slicing mining of steeply dipping coal seam[J]. Rock and Soil Mechanics, 43(5): 1391-1400.
      [15]
      张杰,何义峰,罗南洪,等. 浅埋煤层群重复采动覆岩运移及裂隙演化规律研究[J]. 煤矿安全,2022,53(3):58−65.

      ZHANG Jie, HE Yifeng, LUO Nanhong, et al. Research on overburden movement and fracture evolution of repeated mining in shallow coal seams group[J]. Safety in Coal Mines, 2022, 53(3): 58−65.
      [16]
      刘治成,朱磊,刘永强. 大跨度复合顶板开切眼变形特征及控制技术[J]. 煤矿安全,2020,51(11):83−88.

      LIU Zhicheng, ZHU Lei, LIU Yongqiang. Deformation characteristics and control technology of large span composite roof open-off cut[J]. Safety in Coal Mines, 2020, 51(11): 83−88.
      [17]
      孔德中,刘洋,刘勤志. 大采高工作面煤壁破坏机制研究[J]. 岩石力学与工程学报,2018,37(S1):3458−3469.

      KONG Dezhong, LIU Yang, LIU Qinzhi. Study of coal face failure mechanism of a large-cutting-height mining face[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3458−3469.
      [18]
      赵毅鑫,刘文超,张村,等. 近距离煤层蹬空开采围岩应力及裂隙演化规律[J]. 煤炭学报,2022,47(1):259−273.

      ZHAO Yixin, LIU Wenchao, ZHANG Cun, et al. Stress and fracture evolution of surrounding rock during mining above mined out area in contiguous coal seams[J]. Journal of China Coal Society, 2022, 47(1): 259−273.
      [19]
      周均民,申世豹,刘进晓,等. 厚表土厚坚硬顶板无煤柱切顶留巷关键技术研究[J]. 煤炭工程,2022,54(4):1−6.

      ZHOU Junmin, SHEN Shibao, LIU Jinxiao, et al. Key technology of non-pillar roof cutting entry retaining under thick topsoil and thick hard roof[J]. Coal Engineering, 2022, 54(4): 1−6.
    • Related Articles

      [1]WANG Jiangtao, ZHAO Yaojiang, ZHAO Liang, WANG Hao, WANG Jingrui, ZHANG Huijuan. Study on acoustic emission and mechanical seepage characteristics of low temperature treated coal rock[J]. Safety in Coal Mines, 2022, 53(12): 28-34.
      [2]PENG Yanyan, DENG Haoxiang, FAN Xiao. Influence of intermediate principal stress on mechanics and acoustic emission characteristics of coal rock[J]. Safety in Coal Mines, 2021, 52(6): 78-84.
      [3]GAO Shuo, LEI Ruide, XU Xinhang, XU Shiqing. Experimental study on degradation of mechanical properties of coal and rock and multi-parameter characteristics of acoustic emission signals[J]. Safety in Coal Mines, 2021, 52(6): 17-23.
      [4]LI Lingfeng, LEI Ruide. Experimental Study on Mechanical Properties and AE of Thermally Damaged Sandstone[J]. Safety in Coal Mines, 2020, 51(5): 72-77.
      [5]XU Jiankun, ZHOU Rui, XI Danyang. Experimental Study on Temporal and Spatial Evolution Law of Damage and Failure Precursory Characteristics of Sandstone Under Uniaxial Compression Based on Acoustic Emission[J]. Safety in Coal Mines, 2019, 50(11): 58-62.
      [6]ZHANG Lei, LIU Yue. Analysis of Coal-rock Damage Evolution and Acoustic Emission Characteristics Based on Particle Discrete Element Model[J]. Safety in Coal Mines, 2017, 48(11): 213-216.
      [7]ZHANG Lei, JIA Qifeng. Experimental Research on Characteristics of Acoustic Emission and Damage of Coal Samples Under Uniaxial Loading Process[J]. Safety in Coal Mines, 2017, 48(10): 43-46.
      [8]JIA Qifeng, NI Xiaoming, ZHANG Lei. Analysis of Acoustic Emission and Damage Characteristics of Coal Samples with Different Strength in Loading Process[J]. Safety in Coal Mines, 2017, 48(7): 232-234.
      [9]WANG Xiao, YUAN Ye, MENG Fanbao, LIU Jiankang, WANG Laihe. Effect of Loading Rate on Acoustic Emission Characteristics of Coal-rock Damage Evolution[J]. Safety in Coal Mines, 2016, 47(3): 179-181,186.
      [10]LI Nan, SUN Zhen-yu, SONG Da-zhao, JIN Ming-yue. Experimental Study on Acoustic Emission Characteristic of Raw Coal Failure Under Splitting Test and Uniaxial Compression[J]. Safety in Coal Mines, 2013, 44(10): 45-47,51.
    • Cited by

      Periodical cited type(4)

      1. 彭守建,杨燕,许江,许庆峰,秦朝龙,农晓莉. 深部圆形巷道冲击破坏特征试验研究. 煤矿安全. 2025(01): 107-116 . 本站查看
      2. 欧阳振华,许乾海,张宁博,张天姿,郭浩然,王佳嘉. 煤矿防冲安全性分类赋权评价方法及应用. 煤矿安全. 2024(10): 82-90 . 本站查看
      3. 乔伟,程香港,窦林名,贺虎,孟祥胜,任洋洋,肖冲,蔡进. 深部矿井覆岩沉积环境–力学特性及冲击地压风险判识. 煤田地质与勘探. 2024(10): 60-71 .
      4. 邓志刚,李云鹏,赵善坤,王寅,李少刚,孔令海,蒋军军,苏振国,李一哲,秦凯. 冲击地压煤层智能安全高效开采系统架构与关键技术. 煤矿安全. 2024(12): 1-9 . 本站查看

      Other cited types(3)

    Catalog

      Article views (28) PDF downloads (5) Cited by(7)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return