• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZHENG Xuezhao, WU Shuo, WEN Hu, et al. Study on CO2 adsorption and diffusion law of coal under different temperatures and pressures[J]. Safety in Coal Mines, 2023, 54(9): 60−65. DOI: 10.13347/j.cnki.mkaq.2023.09.009
Citation: ZHENG Xuezhao, WU Shuo, WEN Hu, et al. Study on CO2 adsorption and diffusion law of coal under different temperatures and pressures[J]. Safety in Coal Mines, 2023, 54(9): 60−65. DOI: 10.13347/j.cnki.mkaq.2023.09.009

Study on CO2 adsorption and diffusion law of coal under different temperatures and pressures

More Information
  • Received Date: May 19, 2022
  • Available Online: September 24, 2023
  • In order to overcome the difficulty of gas mining when coal mining depth increased, the adsorption and diffusion laws of CO2 molecules at different temperatures and pressures were simulated by using the simulation software Materials Studio; the relationship between CO2 mean square displacement and time was simulated based on molecular dynamics. The results showed that in the isothermal adsorption curves of 15 ℃, 25 ℃, 30 ℃ and 35 ℃, the adsorption capacity of CO2 decreased gradually when temperature increased. It showed that CO2 was conducive to geological storage at low temperatures; the values of self-diffusion coefficient, corrected diffusion coefficient and transfer diffusion coefficient of CO2 in coal increased when temperature and pressure increased. The maximum value was reached at 35 ℃ and 3.5 MPa.

  • [1]
    马砺,魏高明,李珍宝,等. 高瓦斯煤层注液态CO2压裂增透技术试验研究[J]. 矿业安全与环保,2018,45(5):6−11. doi: 10.3969/j.issn.1008-4495.2018.05.002

    MA Li, WEI Gaoming, LI Zhenbao, et al. Experimental research on fracturing antireflection technology of liquid CO2 in high gas coal seam[J]. Mining Safety & Environmental Protection, 2018, 45(5): 6−11. doi: 10.3969/j.issn.1008-4495.2018.05.002
    [2]
    PAN Rongkun, FU Dong, YU Minggao, et al. Directivity effect of unloading bedding coal induced fracture evolution and its application[J]. International Journal of Mining Science and Technology, 2017, 27(5): 825−829. doi: 10.1016/j.ijmst.2017.07.022
    [3]
    袁亮,林柏泉,杨威. 我国煤矿水力化技术瓦斯治理研究进展及发展方向[J]. 煤炭科学技术,2015,43(1):45−49. doi: 10.13199/j.cnki.cst.2015.01.011

    YUAN Liang, LIN Baiquan, YANG Wei. Research progress and development direction of gas control with mine hydraulic technology in China coal mine[J]. Coal Science and Technology, 2015, 43(1): 45−49. doi: 10.13199/j.cnki.cst.2015.01.011
    [4]
    LIU S Q, SANG S X, MA J S, et al. Effects of supercritical CO2 on micropores in bituminous and anthracite coal[J]. Fuel, 2019, 242: 96−108. doi: 10.1016/j.fuel.2019.01.008
    [5]
    WANG R, WANG Q Z, LIU Q H, et al. CO2 adsorption and swelling of coal under constrained conditions and their stage-change relationship[J]. Journal of Natural Gas Science and Engineering, 2020, 76: 103205. doi: 10.1016/j.jngse.2020.103205
    [6]
    YIN G Z, DENG B Z, LI M H, et al. Impact of injection pressure on CO2-enhanced coalbed methane recovery considering mass transfer between coal fracture and matrix[J]. Fuel, 2017, 196: 288−297. doi: 10.1016/j.fuel.2017.02.011
    [7]
    ZHANG B, FU X, LI G, et al. An experimental study on the effect of nitrogen injection on the deformation of coal during methane desorption[J]. Journal of Natural Gas Science and Engineering, 2020, 83: 103529. doi: 10.1016/j.jngse.2020.103529
    [8]
    贺伟,梁卫国,张倍宁,等. 不同煤阶煤体吸附储存CO2膨胀变形特性试验研究[J]. 煤炭学报,2018,43(5):1408−1415.

    HE Wei, LIANG Weiguo, ZHANG Beining, et al. Experimental study on swelling characteristics of CO2 adsorption and storage in different coal rank[J]. Journal of China Coal Society, 2018, 43(5): 1408−1415.
    [9]
    吕乾龙,刘伟,宋奕澎,等. 无烟煤对CO2和CH4的吸附解吸特性研究[J]. 煤矿安全,2019,50(5):27−30.

    LYU Qianlong, LIU Wei, SONG Yipeng, et al. Adsorption and desorption characteristics of CO2 and CH4 for anthracite[J]. Safety in Coal Mines, 2019, 50(5): 27−30.
    [10]
    张松航,张守仁,唐书恒,等. 无烟煤中甲烷和二氧化碳混合气吸附运移规律[J]. 煤炭学报,2021,46(2):544−555. doi: 10.13225/j.cnki.jccs.XR20.1746

    ZHANG Songhang, ZHANG Shouren, TANG Shuheng, et al. Adsorption and transport of methane and carbon dioxide mixture in anthracite[J]. Journal of China Coal Society, 2021, 46(2): 544−555. doi: 10.13225/j.cnki.jccs.XR20.1746
    [11]
    梁卫国,张倍宁,贺伟,等. 不同阶煤超临界CO2驱替开采CH4试验研究[J]. 煤炭学报,2020,45(1):197−203.

    LIANG Weiguo, ZHANG Beining, HE Wei, et al. Experimental research on supercritical CO2 enhanced coalbed methane recovery in different rank coals[J]. Journal of China Coal Society, 2020, 45(1): 197−203.
    [12]
    张永利,马凯,马玉林. 红外作用下煤对CO2吸附/解吸能量变化规律[J]. 非金属矿,2018,41(5):83−85.

    ZHANG Yongli, MA Kai, MA Yulin. Change law of coal adsorption/desorption energy for CO2 under infrared radiation[J]. Non-Metallic Mines, 2018, 41(5): 83−85.
    [13]
    王宪飞,田林宇,李潘之,等. Materials Studio在金属有机框架材料中气体吸附的应用[J]. 现代化工,2021(11):34−38.

    WANG Xianfei, TIAN Linyu, LI Panzhi, et al. Application of Materials Studio software for gas adsorption in metal organic framework materials[J]. Modern Chemical Industry, 2021(11): 34−38.
    [14]
    李祥春,张梦婷,李忠备,等. 气体吸附过程中煤比表面Gibbs函数变化规律[J]. 煤炭学报,2019,44(2):509−519. doi: 10.13225/j.cnki.jccs.2018.0922

    LI Xiangchun, ZHANG Mengting, LI Zhongbei, et al. Variation law of coal specific surface Gibbs function in gas adsorption process[J]. Journal of China Coal Society, 2019, 44(2): 509−519. doi: 10.13225/j.cnki.jccs.2018.0922
    [15]
    ZHAO Y, FENG Y, ZHANG X. Molecular simulation of CO2/CH4 self- and transport diffusion coefficients in coa1[J]. Fuel, 2016, 165: 19−27. doi: 10.1016/j.fuel.2015.10.035
    [16]
    ZHAO Y, FENG Y, ZHANG X. Selective adsorption and selective transport diffusion of CO2-CH4 binary mixturein coal ultromicropores[J]. Environmental Science & Technology, 2016, 50(17): 9380−9389.
    [17]
    林海飞,刘静波,严敏,等. CO2/CH4在煤储层中扩散规律的分子动力学模拟[J]. 中国安全生产科学技术,2017,13(1):84−89.

    LIN Haifei, LIU Jingbo, YAN Min, et al. Molecular dynamics simulation on diffusion rules of CO2/CH4 in coal reservoir[J]. Journal of Safety Science and Technology, 2017, 13(1): 84−89.
    [18]
    潘睿. Material Studio7.0分子模拟软件在结构化学晶体结构教学中的应用[J]. 化学教育(中英文),2018,39(12):73−77.

    PAN Rui. Application of Material Studio software 7.0 in crystal structure teaching of structural chemistry[J]. Chinese Journal of Chemical Education, 2018, 39(12): 73−77.
    [19]
    王奥,岳冬梅,刘彬,等. 丁二烯—丙烯腈—异戊二烯三元共聚物的耐低温性能及分子模拟[J]. 合成橡胶工业,2017,40(4):255−261.

    WANG Ao, YUE Dongmei, LIU Bin, et al. Low temperature resistance and molecular simulation of butadiene acrylonitrile isoprene terpolymer[J]. China Synthetic Rubber Industry, 2017, 40(4): 255−261.
    [20]
    罗开强,罗艳龙,刘昊北,等. 链中改性溶聚丁苯橡胶对白炭黑分散性影响的实验研究和分子模拟[J]. 轮胎工业,2017,37(7):404−409.

    LUO Kaiqiang, LUO Yanlong, LIU Haobei, et al. Experimental study and molecular simulation of silica dispersion in in-chain modified SSBR[J]. Tire Industry, 2017, 37(7): 404−409.
    [21]
    李强国,陈新,张卓,等. 实验与分子模拟法结合探究防老剂对天然橡胶热氧老化的防护机理[J]. 高分子材料科学与工程,2018,34(1):106−111. doi: 10.16865/j.cnki.1000-7555.2018.01.020

    LI Qiangguo, CHEN Xin, ZHANG Zhuo, et al. Protection mechanism of antioxidant for thermo-oxidative ageing of natural rubber with combination of experimental and molecular dynamics simulation[J]. Polymer Materials Science & Engineering, 2018, 34(1): 106−111. doi: 10.16865/j.cnki.1000-7555.2018.01.020
    [22]
    刘慧玲,牛国庆,李垣志. 基于AHP未确知测度模型的瓦斯爆炸风险评价[J]. 煤矿安全,2016,47(12):157−159.

    LIU Huiling, NIU Guoqing, LI Yuanzhi. Risk assessment of gas explosion based on AHP and uncertainty measurement theory[J]. Safety in Coal Mines, 2016, 47(12): 157−159.
  • Related Articles

    [1]XU Jiang, CHEN Qian, LI Juyun. Molecular simulation of self-diffusion of CH4, H2O and CO2 in coal macromolecule[J]. Safety in Coal Mines, 2024, 55(9): 85-93. DOI: 10.13347/j.cnki.mkaq.20221827
    [2]DENG Xiaopeng, XIANG Jianhua. Molecular simulation study on competitive adsorption characteristics of CO2 and CH4 for 8# coal in Dongqu Mine[J]. Safety in Coal Mines, 2024, 55(3): 18-24. DOI: 10.13347/j.cnki.mkaq.20230796
    [3]WANG Wencai, WANG Peng, CAO Zhao, LI Junpeng. Simulation of gas molecules permeation diffusion in coal structure and gangue slit structure[J]. Safety in Coal Mines, 2023, 54(11): 33-41. DOI: 10.13347/j.cnki.mkaq.2023.11.007
    [4]GAO Yu. Study on mathematical model of coal particles gas adsorption under different particle sizes and pressures[J]. Safety in Coal Mines, 2023, 54(7): 109-117.
    [5]LI Ziwen, BAI Yansong, YU Hongjin, GAO Yabin. Molecular simulation of adsorption thermodynamic properties of CH4 and CO2 at different temperature and moisture content conditions[J]. Safety in Coal Mines, 2022, 53(10): 112-119.
    [6]ZHANG Hongtu, HAO Yushuang, WEI Jianping. Study on Characteristic Parameters of Particulate Coal Gas Desorption and Diffusion Under Negative Pressure Environment[J]. Safety in Coal Mines, 2020, 51(10): 191-195.
    [7]XU Chao, WANG Shuo, GUO Haijun, FU Qiang. Unsteady-state Diffusion Characteristics Model of Gas in Coal and Experimental Verification[J]. Safety in Coal Mines, 2018, 49(5): 1-5.
    [8]LIU Yanwei, LI Tong, XUE Wentao. Difference of Dynamic Variation Laws of Gas Diffusion Coefficient of Soft and Hard Coal[J]. Safety in Coal Mines, 2017, 48(9): 17-20,24.
    [9]CHI Lei-lei, WANG Qi-fei, WANG Fei-yin, LI Zhen, DONG Li-hui, SHI Quan-shou. Coal Gas Desorption and Diffusion Laws and Its Experimental Study[J]. Safety in Coal Mines, 2013, 44(12): 1-3,10.
    [10]LI Yi-bo, ZHENG Wan-cheng, WANG Feng-shuang. The Effect of Coal Sample Particle Size on Coal Adsorption Constants and Initial Speed of Methane Diffusing[J]. Safety in Coal Mines, 2013, 44(1): 5-8.
  • Cited by

    Periodical cited type(3)

    1. 贾丽娜. 基于散斑干涉法的岩体剪切变形程度研究——以铜仁市水库工程为例. 水利科技与经济. 2024(08): 6-9 .
    2. 李明胜. 基于数值模拟分析的煤场软土地基处理. 中国煤炭地质. 2024(11): 44-49+39 .
    3. 陈光波,唐薇,李谭,王创业,王二雨,张国华. 裂隙煤岩组合体单轴压缩力学响应及失稳机制. 岩土力学. 2024(09): 2633-2652 .

    Other cited types(2)

Catalog

    Article views (54) PDF downloads (17) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return