• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
CHEN Xi, LI Siyu, BIAN Kai, et al. Water inrush risk assessment based on FAHP-EWM combined weight[J]. Safety in Coal Mines, 2024, 55(2): 184−193. DOI: 10.13347/j.cnki.mkaq.20222184
Citation: CHEN Xi, LI Siyu, BIAN Kai, et al. Water inrush risk assessment based on FAHP-EWM combined weight[J]. Safety in Coal Mines, 2024, 55(2): 184−193. DOI: 10.13347/j.cnki.mkaq.20222184

Water inrush risk assessment based on FAHP-EWM combined weight

More Information
  • Received Date: December 01, 2022
  • Revised Date: February 10, 2023
  • Through statistical analysis of geological and hydrogeological data of the early mining section of a mine field in Wubao Mining Area, the main control factors affecting the water inrush from the floor of the main mining coal seam were determined. Fuzzy analytic hierarchy process(FAHP)and entropy weight method(EWM)were used to calculate the subjective and objective weights of each factor. The combination weights were calculated by addition synthesis method, range maximization method, game theory method and minimum discriminant information method, respectively. Combined with the vulnerability index method, the information fusion technology of GIS was used to obtain the water inrush vulnerability assessment zoning of the study area. The transition trend of the four evaluation results is basically the same, but there are some areas with different rating results. The Spearman rank correlation coefficient was used to optimize the evaluation results of four kinds of water inrush vulnerability. The results showed that the correlation coefficient between the vulnerability index ranking based on the minimum discriminant information method and the “reasonable ranking” was the highest. Therefore, it can be inferred that among the four vulnerability assessment results, the water inrush vulnerability assessment obtained by the combination of the minimum discriminant information method is the best.

  • [1]
    田午子. 范各庄矿煤层底板突水危险性评价方法[D]. 三河:华北科技学院,2021.
    [2]
    任君豪,王心义,王麒,等. 基于多方法的煤层底板突水危险性评价[J]. 煤田地质与勘探,2022,50(2):89−97.

    REN Junhao, WANG Xinyi, WANG Qi, et al. Risk assessment of water inrush from coal seam floors based on multiple methods[J]. Coal Geology & Exploration, 2022, 50(2): 89−97.
    [3]
    王俊智. 基于多方法的煤层底板带压开采突水危险性评价[D]. 焦作:河南理工大学,2020.
    [4]
    武强,王金华,刘东海,等. 煤层底板突水评价的新型实用方法Ⅳ:基于GIS的AHP型脆弱性指数法应用[J]. 煤炭学报,2009,34(2):233−238.

    WU Qiang, WANG Jinhua, LIU Donghai, et al. A new practical methodology of the coal floor water bursting evaluating IV: the application of AHP vulnerable index method based on GIS[J]. Journal of China Coal Society, 2009, 34(2): 233−238.
    [5]
    李建林,王泓斐,王登磊,等. 基于分形-脆弱性指数法的煤矿底板突水预测−以王行庄煤矿为例[J]. 河南理工大学学报(自然科学版),2018,37(3):26−31.

    LI Jianlin, WANG Hongfei, WANG Denglei, et al. Floor water inrush prediction of coal mine based on the fractal-vulnerability index method: A case of Wangxingzhuang mine[J]. Journal of Henan Polytechnic University(Natural Science), 2018, 37(3): 26−31.
    [6]
    施龙青,张荣遨,韩进,等. 基于熵权法-层次分析法耦合赋权的多源信息融合突水危险性评价[J]. 河南理工大学学报(自然科学版),2020,39(3):17−25.

    SHI Longqing, ZHANG Rongao, HAN Jin, et al. Water inrush risk assessment with multi-source information type fusion based on EWM-AHP comprehensive weighting[J]. Journal of Henan Polytechnic University (Natural Science), 2020, 39(3): 17−25.
    [7]
    郭信山,施龙青. 基于断层影响因子与断层分维特征的断层突水危险性定量化分析[J]. 山东大学学报(工学版),2014,44(5):58−64.

    GUO Xinshan, SHI Longqing. Research on quantitative analysis of water inrush through risk based onfault impact factor and fault fractal dimension characteristics[J]. Journal of Shandong University(Engineering Science), 2014, 44(5): 58−64.
    [8]
    徐慧. 煤矿含水层富水性“双测”技术[J]. 煤炭技术,2021,40(2):43−47.

    XU Hui. “Double measurement” technology of water-rich aquifer in coal mine[J]. Coal Technology, 2021, 40(2): 43−47.
    [9]
    薛建坤. 基于分形理论的富水性指数法在含水层富水性评价中的应用[J]. 煤矿安全,2020,51(2):197−201.

    XUE Jiankun. Application of water-rich index method based on fractal theory in water-rich evaluation of aquifer[J]. Safety in Coal Mines, 2020, 51(2): 197−201.
    [10]
    刘守强,武强,李哲,等. 多煤层底板单一含水层矿区突水变权脆弱性评价与应用[J]. 中国矿业大学学报,2021,50(3):587−597.

    LIU Shouqiang, WU Qiang, LI Zhe, et al. Vulnerability evaluation and application of floor water inrush in mining area with multiple coal seams and single aquifer based on variable weight[J]. Journal of China University of Mining & Technology, 2021, 50(3): 587−597.
    [11]
    边凯. 赵各庄矿深部煤层底板突水危险性与断裂滞后突水评价[D]. 北京:中国矿业大学(北京),2015.
    [12]
    赵德康. 煤层顶底板涌(突)水风险评价与疏降水量预测研究[D]. 北京:中国矿业大学(北京),2018.
    [13]
    张怀,武强. 基于熵值法—FAHP的煤层底板突水常权脆弱性指数法应用[J]. 能源与环保,2020,42(4):1−5.

    ZHANG Huai, WU Qiang. Application of constant weight vulnerability index method of water-inrush from coal seam floor based on entropy method and FAHP[J]. China Energy and Environmental Protection, 2020, 42(4): 1−5.
    [14]
    陈建平,李金柱,王雪冬,等. 改进脆弱性指数法在煤矿底板突水评价中的应用[J]. 中国地质灾害与防治学报,2019,30(3):67−74.

    CHEN Jianping, LI Jinzhu, WANG Xuedong, et al. Improved vulnerability index method for evaluating waterinrush from the floor of coal seam[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(3): 67−74.
    [15]
    毕尧山,吴基文,翟晓荣,等. 基于AHP与独立性权系数综合确权的煤矿含水层富水性评价[J]. 水文,2020,40(4):40−45.

    BI Yaoshan, WU Jiwen, ZHAI Xiaorong, et al. Evaluation of coal mine aquifer water-richness based on AHP and independentweight coefficient method[J]. Journal of China Hydrology, 2020, 40(4): 40−45.
    [16]
    秦永泰. 基于FAHP-EWM的煤层底板突水脆弱性评价[D]. 焦作:河南理工大学,2016.
    [17]
    刘守强. 煤层底板突水评价方法与应用研究[D]. 北京:中国矿业大学(北京),2012.
    [18]
    张健. 刘庄矿煤层底板多含水层突水危险性与疏降水量预测研究[D]. 北京:中国矿业大学(北京),2019.
    [19]
    丁航航. 马道头矿地堑断层带突水机理与煤层底板突水危险性评价[D]. 北京:中国矿业大学(北京),2021.
    [20]
    张吉军. 模糊层次分析法(FAHP)[J]. 模糊系统与数学,2000,14(2):80−88.

    ZHANG Jijun. Fuzzy analyticl hierarchy process[J]. Fuzzy System and Mathematics, 2000, 14(2): 80−88.
    [21]
    李均,王志诚,吴雨轩,等. 熵概念的延拓-从热熵到信息熵[J]. 大学物理,2020,39(10):29−33.

    LI Jun, WANG Zhicheng, WU Yuxuan, et al. The extension of the concept of entropy-from thermal entropy to information entropy[J]. College Physics, 2020, 39(10): 29−33.
    [22]
    刘伟韬,孙茜,徐百超. 基于GIS及主成分熵权法的底板突水危险性评价[J]. 矿业研究与开发,2020,40(11):83−88.

    LIU Weitao, SUN Qian, XU Baichao. Risk evaluation of water inrush from coal seam floor based on GIS and principal component analysis-entropy weight method[J]. Mining Research and Development, 2020, 40(11): 83−88.
    [23]
    李刚,李建平,孙晓蕾,等. 主客观权重的组合方式及其合理性研究[J]. 管理评论,2017,29(12):17−26.

    LI Gang, LI Jianping, SUN Xiaolei, et al. Research on a combined method of subjective-objective weighing and the its rationality[J]. Management Review, 2017, 29(12): 17−26.
    [24]
    王彦敏,刘天浩,董晨磊,等. 基于信息熵权—复相关系数法的煤层底板突水危险性评价[J]. 现代矿业,2021,37(2):173−177.

    WANG Yanmin, LIU Tianhao, DONG Chenlei, et al. Risk assessment of water inrush from coal floor based on information entropy weight complex correlation coefficient method[J]. Modern Mining, 2021, 37(2): 173−177.
    [25]
    武强,刘守强,贾国凯. 脆弱性指数法在煤层底板突水评价中的应用[J]. 中国煤炭,2010,36(6):15−19.

    WU Qiang, LIU Shouqiang, JIA Guokai. Application of vulnerable index method in the assessment of water outbursts from coal seam floor[J]. China Coal, 2010, 36(6): 15−19.
  • Related Articles

    [1]YANG Yingbing, WANG Qingxiang, SONG Xiaolin, HE Chengmao, XU Ran, TANG Mingyun, WANG Guangxiong, HE Bingbing, CHEN Minghao. Research on distribution and dynamic evolution characteristics of surface fractures in shallow coal seam mining of Shendong Mining Area[J]. Safety in Coal Mines, 2024, 55(6): 66-75. DOI: 10.13347/j.cnki.mkaq.20231615
    [2]GUO Minggong. Experimental study on deformation and failure characteristics of drainage boreholes based on speckle monitoring[J]. Safety in Coal Mines, 2023, 54(7): 130-136.
    [3]Evolution characteristics of cracks and strain energy during progressive failure of coal and rock masses around the hole[J]. Safety in Coal Mines, 2022, 53(3): 16-23.
    [4]GUO Junjie, CHENG Xiaoyang. Test of Crack Evolution of Coal Samples Under Cyclic Loading and Numerical Simulation[J]. Safety in Coal Mines, 2019, 50(9): 71-74.
    [5]GUO Shousong. Experimental Study on Failure Characteristics and Crack Evolution Laws of Sandstone Containing Pre-existing Single Crack[J]. Safety in Coal Mines, 2019, 50(7): 56-60.
    [6]XU Guosheng, LI Huigui, GUAN Jinfeng. Laws of Overburden Strata Rupture and Fissure Evolution During Mining Under Water Body[J]. Safety in Coal Mines, 2018, 49(4): 42-45,49.
    [7]XIAO Yang, ZHOU Yifeng, MA Li, LU Junhui. Research on Temperature-pressure Coupling Model During Crack Evolution of Coal in Coalfield Fire Area[J]. Safety in Coal Mines, 2017, 48(3): 32-35.
    [8]LI Shu-gang, LI Wei, SONG Shuang, ZHANG Tian-jun. Study on Relation Between Abutment Pressure and Overlying Strata Cracks Evolution at Fully-mechanized Sublevel Caving Face[J]. Safety in Coal Mines, 2013, 44(10): 52-55.
    [9]TAN Zhang-lu, CHEN Zhi-yu. Application of Grey Theory in Period Optimization of Freezing Construction[J]. Safety in Coal Mines, 2013, 44(7): 226-228.
    [10]LI Hao, XIAO Jun-xian, TIAN Tao. The Grey Comprehensive Evaluation of Mine Ventilation System Based on AHP[J]. Safety in Coal Mines, 2012, 43(10): 166-169.

Catalog

    Article views (30) PDF downloads (3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return