• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZHANG Minbo, LI Chunxin, ZHANG Shilong, et al. Research on damage characteristics and energy evolution law of coal rock under cyclic gradient loading[J]. Safety in Coal Mines, 2024, 55(2): 133−140. DOI: 10.13347/j.cnki.mkaq.20221990
Citation: ZHANG Minbo, LI Chunxin, ZHANG Shilong, et al. Research on damage characteristics and energy evolution law of coal rock under cyclic gradient loading[J]. Safety in Coal Mines, 2024, 55(2): 133−140. DOI: 10.13347/j.cnki.mkaq.20221990

Research on damage characteristics and energy evolution law of coal rock under cyclic gradient loading

More Information
  • Author Bio:

    ZHANG Minbo,

  • Received Date: November 03, 2022
  • Revised Date: January 13, 2023
  • In coal mining, the rock mass is often in the process of repeated cyclic loading due to the influence of excavation and unloading factors. In order to study the damage and failure characteristics and energy evolution law of coal and rock under cyclic gradient loading, a uniaxial cyclic gradient loading experiment was carried out on coal samples, and deformation failure characteristics, input energy density, dissipated energy density and damage variables of the coal samples under different cyclic gradient loading were compared and analyzed. The results show that with the increase of the cyclic gradient stress, the number of cycles and the peak strength of the coal samples decrease, which are 17.97, 14.86, 11.23, and 10.53 MPa; in cyclic gradient loading, most of the input energy density is stored inside the rock sample in the form of elastic strain energy, and the dissipation energy increases between 0.2% and 40% of the total input energy in a single cycle. Cumulative dissipation is selected as the quantitative index of the whole process of coal and rock damage, and the Logistic equation is used to fit the coal and rock damage, and the evolution model of coal and rock damage is obtained.

  • [1]
    徐超,付强,王凯,等. 载荷方式对深部采动煤体损伤-渗透时效特性影响实验研究[J]. 中国矿业大学学报,2018,47(1):197−205.

    XUE Chao, FU Qiang, WANG Kai, et al. Effects of the loading methods on the damage-permeability aging characteristics of deep mining coal[J]. Journal of China University of Mining & Technology, 2018, 47(1): 197−205.
    [2]
    吴再海,宋朝阳,谭杰,等. 不同分级循环加卸载模式下岩石能量演化规律研究[J]. 采矿与安全工程学报,2020,37(4):836-844.

    WU Zaihai, SONG Chaoyang, TAN Jie, et al. The evolution law of rock energy under different graded cyclic loading and unloading modes[J]. Journal of Mining & Safety Engineering, 2020, 37(4): 836-844.
    [3]
    王新丰,何毅,陆明远,等. 开挖卸荷扰动深部巷道围岩变形破坏特征研究[J]. 中国安全科学学报,2021,31(8):83−90.

    WANG Xinfeng, HE Yi, LU Mingyuan, et al. Study on deformation and failure characteristics of deep roadway surrounding rock under excavation unloading disturbance[J]. China Safety Science Journal, 2021, 31(8): 83−90.
    [4]
    任伟光,周宏伟,薛东杰,等. 上保护层开采下煤岩强扰动力学行为与渗透特性[J]. 煤炭学报,2019,44(5):1473−1481.

    REN Weiguang, ZHOU Hongwei, XUE Dongjie, et al. Mechanical behavior and permeability of coal and rock under strong mining disturbance in protected coal seam mining[J]. Journal of China Coal Society, 2019, 44(5): 1473−1481.
    [5]
    李夕兵,宫凤强,王少锋,等. 深部硬岩矿山岩爆的动静组合加载力学机制与动力判据[J]. 岩石力学与工程学报,2019,38(4):708−723.

    LI Xibing, GONG Fengqiang, WANG Shaofeng, et al. Coupled static-dynamic loading mechanical mechanism and dynamic criterion of rock burst in deep hard rock mines[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 708−723.
    [6]
    李树刚,刘思博,林海飞,等. 分级循环加卸载煤体变形破坏特征试验研究[J]. 煤炭科学技术,2021,49(4):199−205.

    LI Shugang, LIU Sibo, LIN Haifei, et al. Experimental research on deformation and failure characteristics of coal by staged cyclic loading and unloading[J]. Coal Science and Technology, 2021, 49(4): 199−205.
    [7]
    何明明,陈蕴生,李宁,等. 单轴循环荷载作用下砂岩变形特性与能量特征[J]. 煤炭学报,2015,40(8):1805−1812.

    HE Mingming, CHEN Yunsheng, LI Ning, et al. Deformation and energy characteristics of sandstone subjected to uniaxial cyclic loadind[J]. Journal of China Coal Society, 2015, 40(8): 1805−1812.
    [8]
    李凌峰,雷瑞德. 热损伤砂岩力学特性与声发射试验研究[J]. 煤矿安全,2020,51(5):72−77.

    LI Lingfeng, LEI Ruide. Experimental study on mechanical properties and AE of thermally damaged sandstone[J]. Safety in Coal Mines, 2020, 51(5): 72−77.
    [9]
    张科,叶锦明,刘享华. 冻融循环作用下受荷砂岩的能量演化与破碎分形特征[J]. 中国安全生产科学技术,2021,17(8):111−116.

    ZHANG Ke, YE Jinming, LIU Xianghua. Energy evolution and fractured fractal characteristics of loaded sandstone under freeze-thaw cycles[J]. Journal of Safety Science and Technology, 2021, 17(8): 111−116.
    [10]
    VANEGHI R G, FERDOSI B, OKOTH A D, et al. Strength degradation of sandstone and granodiorite under uniaxial cyclic loading[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(1): 117−126. doi: 10.1016/j.jrmge.2017.09.005
    [11]
    YANG F, HU D, ZHOU H, et al. Physico-mechanical behaviors of granite under coupled static and dynamic cyclic loadings[J]. Rock Mechanics and Rock Engineering, 2020, 53(5): 2157−2173. doi: 10.1007/s00603-019-02040-y
    [12]
    郜欣,徐颖,李成杰,等. 不同应力比的循环荷载下砂岩变形损伤特性研究[J]. 中国安全生产科学技术,2021,17(11):60−64.

    GAO Xin, XU Ying, LI Chengjie, et al. Research on deformation and damage characteristics of sandstone under cyclic load with different stress ratios[J]. Journal of Safety Science and Technology, 2021, 17(11): 60−64.
    [13]
    杨科,张寨男,池小楼,等. 循环载荷下含水砂岩裂纹演化与损伤特征试验研究[J]. 岩土力学,2022,43(7):1791−1802.

    YANG Ke, ZHANG Zhainan, CHI Xiaolou, et al. Experimental study on crack evolution and damage characteristics of water bearing sandstone under cyclic loading[J]. Rock and Soil Mechanics, 2022, 43(7): 1791−1802.
    [14]
    LIU X S, NING J G, TAN Y L, et al. Damage constitutive model based on energy dissipation for intact rock subjected to cyclic loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 85: 27−32. doi: 10.1016/j.ijrmms.2016.03.003
    [15]
    徐金海,张晓悟,刘智兵,等. 循环加卸载条件下煤岩组合体力学响应及能量演化规律[J]. 长江科学院院报,2022,39(5):89−94.

    XU Jinhai, ZHANG Xiaowu, LIU Zhibing, et al. Mechanical response and energy evolution law of coal-rock combined specimen under cyclic loading and unloading conditions[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(5): 89−94.
    [16]
    GAO D, SANG S, LIU S, et al. Investigation of the energy evolution of tectonic coal under triaxial cyclic loading with different loading rates and the underlying mechanism[J]. Energies, 2021, 14(23): 8124−8143. doi: 10.3390/en14238124
    [17]
    李波波,张尧,任崇鸿,等. 三轴应力下煤岩损伤-能量演化特征研究[J]. 中国安全科学学报,2019,29(10):98−104.

    LI Bobo, ZHANG Yao, REN Chonghong, et al. Study on damage-energy evolution characteristics of coal under triaxial stress[J]. China Safety Science Journal, 2019, 29(10): 98−104.
    [18]
    李杨杨,张士川,文志杰,等. 循环载荷下煤样能量转化与碎块分布特征[J]. 煤炭学报,2019,44(5):1411−1420.

    LI Yangyang, ZHANG Shichuan, WEN Zhijie, et al. Energy conversion and fragment distribution characteristics of coal sample under uniaxial cyclic loading[J]. Journal of China Coal Society, 2019, 44(5): 1411−1420.
    [19]
    经来旺,李学帅,严悦,等. 分级循环加卸载作用下煤岩损伤本构模型研究[J]. 煤矿安全,2022,53(1):71−78.

    JING Laiwang, LI Xueshuai, YAN Yue, et al. Study on constitutive model of coal rrock damage under graded cyclic loading and unloading[J]. Safety in Coal Mines, 2022, 53(1): 71−78.
    [20]
    GB/T 23561.1—2009,煤和岩石物理力学性质测定方法 第1部分:采样一般规定[S].
    [21]
    孟庆彬,王从凯,黄炳香,等. 三轴循环加卸载条件下岩石能量演化及分配规律[J]. 岩石力学与工程学报,2020,39(10):2047−2059.

    MENG Qingbin, WANG Congkai, HUANG Bingxiang, et al. Rock energy evolution and distribution law under triaxial cyclic loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10): 2047−2059.
    [22]
    金解放. 静载荷与循环冲击组合作用下岩石动态力学特性研究[D]. 长沙:中南大学,2012.
  • Related Articles

    [1]YANG Yingbing, WANG Qingxiang, SONG Xiaolin, HE Chengmao, XU Ran, TANG Mingyun, WANG Guangxiong, HE Bingbing, CHEN Minghao. Research on distribution and dynamic evolution characteristics of surface fractures in shallow coal seam mining of Shendong Mining Area[J]. Safety in Coal Mines, 2024, 55(6): 66-75. DOI: 10.13347/j.cnki.mkaq.20231615
    [2]GUO Minggong. Experimental study on deformation and failure characteristics of drainage boreholes based on speckle monitoring[J]. Safety in Coal Mines, 2023, 54(7): 130-136.
    [3]Evolution characteristics of cracks and strain energy during progressive failure of coal and rock masses around the hole[J]. Safety in Coal Mines, 2022, 53(3): 16-23.
    [4]GUO Junjie, CHENG Xiaoyang. Test of Crack Evolution of Coal Samples Under Cyclic Loading and Numerical Simulation[J]. Safety in Coal Mines, 2019, 50(9): 71-74.
    [5]GUO Shousong. Experimental Study on Failure Characteristics and Crack Evolution Laws of Sandstone Containing Pre-existing Single Crack[J]. Safety in Coal Mines, 2019, 50(7): 56-60.
    [6]XU Guosheng, LI Huigui, GUAN Jinfeng. Laws of Overburden Strata Rupture and Fissure Evolution During Mining Under Water Body[J]. Safety in Coal Mines, 2018, 49(4): 42-45,49.
    [7]XIAO Yang, ZHOU Yifeng, MA Li, LU Junhui. Research on Temperature-pressure Coupling Model During Crack Evolution of Coal in Coalfield Fire Area[J]. Safety in Coal Mines, 2017, 48(3): 32-35.
    [8]LI Shu-gang, LI Wei, SONG Shuang, ZHANG Tian-jun. Study on Relation Between Abutment Pressure and Overlying Strata Cracks Evolution at Fully-mechanized Sublevel Caving Face[J]. Safety in Coal Mines, 2013, 44(10): 52-55.
    [9]TAN Zhang-lu, CHEN Zhi-yu. Application of Grey Theory in Period Optimization of Freezing Construction[J]. Safety in Coal Mines, 2013, 44(7): 226-228.
    [10]LI Hao, XIAO Jun-xian, TIAN Tao. The Grey Comprehensive Evaluation of Mine Ventilation System Based on AHP[J]. Safety in Coal Mines, 2012, 43(10): 166-169.

Catalog

    Article views (37) PDF downloads (3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return