Citation: | ZUO Wenzhe, QIAO Yonggang, HUA Jie, et al. Numerical simulation study on coal and gas outburst impact airflow[J]. Safety in Coal Mines, 2024, 55(2): 55−61. DOI: 10.13347/j.cnki.mkaq.20221872 |
In order to reveal the propagation law of coal and gas outburst impact airflow, the distribution laws of velocity field, pressure field, impact force field, concentration field of impact airflow in the process of coal and gas outburst are simulated by using the high Mach flow and dense material transfer module in COMSOL software. The simulation results show that the impact airflow in the roadway is jet like, with a velocity of 378.6 m/s, and with the increase of distance, it presents a multi peak vibration attenuation trend. Periodic expansion wave zone and compression wave zone appear in the jet, and the tail of the jet zone develops into turbulence and instability, and moves disorderly in the roadway. The impact force of the protruding blast flow can be as high as 246.3 kPa, and the shock wave moves in the roadway at the local sound speed. The maximum gas diffusion distance is 133.6 m, and the gas volume fraction in the middle of the roadway is close to 100%. Due to the pressure difference in the roadway at the later stage of the outburst, the gas returns, and the high volume fraction gas is further mixed with the air in the roadway.
[1] |
杨书召,张瑞林. 煤与瓦斯突出冲击波及瓦斯气流所致伤害研究[J]. 中国安全科学学报,2012,22(11):62−66.
YANG Shuzhao, ZHANG Ruilin. Research on injuries due to shock wave and gas flow from coal and gas outburst[J]. China Safety Science Journal, 2012, 22(11): 62−66.
|
[2] |
李成武,付帅,崔永国,等. 高浓瓦斯井巷运移规律及致灾时空特征研究[J]. 中国矿业大学学报,2017,46(1):27−32.
LI Chengwu, FU Shuai, CUI Yongguo, et al. Study of the migration rule of high-concentration gas and spatial-temporal feature of gas hazard in the tunnel[J]. Journal of China University of Mining & Technology, 2017, 46(1): 27−32.
|
[3] |
许江,程亮,彭守建,等. 煤与瓦斯突出冲击气流形成及传播规律[J]. 煤炭学报,2022,47(1):333−347.
XU Jiang, CHENG Liang, PENG Shoujian, et al. Formation and propagation law of coal and gas outburst impact airflow[J]. Journal of China Coal Society, 2022, 47(1): 333−347.
|
[4] |
程亮,许江,周斌,等. 不同瓦斯压力对煤与瓦斯突出两相流传播规律的影响研究[J]. 岩土力学,2020,41(8):2619−2626.
CHENG Liang, XU Jiang, ZHOU Bin, et al. The influence of different gas pressures on the propagation law of coal and gas outburst two-phase flow[J]. Rock and Soil Mechanics, 2020, 41(8): 2619−2626.
|
[5] |
曹偈,赵旭生,刘延保. 煤与瓦斯突出多物理场分布特征的数值模拟研究[J]. 矿业安全与环保,2021,48(2):7−11.
CAO Jie, ZHAO Xusheng, LIU Yanbao. Numerical simulation on multiphysics field distribution characteristics of coal and gas outburst[J]. Mining Safety & Environmental Protection, 2021, 48(2): 7−11.
|
[6] |
曹偈,孙海涛,戴林超,等. 煤与瓦斯突出动力效应的模拟研究[J]. 中国矿业大学学报,2018,47(1):113−121.
CAO Jie, SUN Haitao, DAI Linchao, et al. Simulation research on dynamic effect of coal and gas outburst[J]. Journal of China University of Mining & Technology, 2018, 47(1): 113−121.
|
[7] |
魏建平,朱会启,温志辉,等. 煤与瓦斯突出冲击波传播规律实验研究[J]. 煤,2010,19(8):11−13.
WEI Jianping, ZHU Huiqi, WEN Zhihui, et al. Coal and gas outburst shock wave propagation experiments[J]. Coal, 2010, 19(8): 11−13.
|
[8] |
孙东玲,曹偈,苗法田,等. 突出煤-瓦斯在巷道内的运移规律[J]. 煤炭学报,2018,43(10):2773−2779.
SUN Dongling, CAO Jie, MIAO Fatian, et al. Migration law of outburst coal and gas in roadway[J]. Journal of China Coal Society, 2018, 43(10): 2773−2779.
|
[9] |
许江,程亮,魏仁忠,等. T型巷道中突出煤−瓦斯两相流动力学试验研究[J]. 岩土力学,2022,43(6):1423−1433.
XU Jiang, CHENG Liang, WEI Renzhong, et al. Propagation characteristics of coal-gas two-phase flow in T-shaped roadway[J]. Rock and Soil Mechanics, 2022, 43(6): 1423−1433.
|
[10] |
高佳星,王俊峰,刘硕. 煤与瓦斯突出冲击波模型优化计算分析[J]. 煤矿安全,2017,48(8):147−150.
GAO Jiaxing, WANG Junfeng, LIU Shuo. Optimization analysis of coal and gas outburst shock wave model[J]. Safety in Coal Mines, 2017, 48(8): 147−150.
|
[11] |
吴爱军,蒋承林. 煤与瓦斯突出冲击波传播规律研究[J]. 中国矿业大学学报,2011,40(6):852−857.
WU Aijun, JIANG Chenglin. Research on the propagation of shock waves from coal and gas outburst[J]. Journal of China University of Mining & Technology, 2011, 40(6): 852−857.
|
[12] |
张建方,王凯,韦彩平. 煤与瓦斯突出冲击波的形成与传播规律研究[J]. 采矿与安全工程学报,2010,27(1):67−71.
ZHANG Jianfang, WANG Kai, WEI Caiping. Formation and propagation of shock waves during coal and gas outbursts[J]. Journal of Mining & Safety Engineering, 2010, 27(1): 67−71.
|
[13] |
王凯,周爱桃,张建芳,等. 直角拐弯巷道中瓦斯突出冲击气流传播特征研究[J]. 中国矿业大学学报,2011,40(6):857−862.
WANG Kai, ZHOU Aitao, ZHANG Jianfang, et al. Study of the shock wave propagation and gas flow during a coal and gas outburst at the roadway with a right-angled bend[J]. Journal of China University of Mining & Technology, 2011, 40(6): 857−862.
|
[14] |
刘星魁,赵志梅. 直角拐角与障碍物对巷道瓦斯突出冲击波传播的影响[J]. 煤矿安全,2016,47(6):178−181.
LIU Xingkui, ZHAO Zhimei. Effect of right corner and barrier on shock wave transmission of methane outburst in tunnel[J]. Safety in Coal Mines, 2016, 47(6): 178−181.
|
[15] |
王汉鹏,张冰,袁亮,等. 吸附瓦斯含量对煤与瓦斯突出的影响与能量分析[J]. 岩石力学与工程学报,2017,36(10):2449−2456.
WANG Hanpeng, ZHANG Bing, YUAN Liang, et al. Influence of adsorption gas content on coal and gas outburst and energy analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2449−2456.
|
[16] |
陶云奇. 含瓦斯煤THM耦合模型及煤与瓦斯突出模拟研究[D]. 重庆:重庆大学,2009.
|
[17] |
ZHANG C, WANG Y, WANG E, et al. Influence of coal seam gas pressure on the propagation mechanism of outburst two-phase flow in visual roadway[J]. Fuel, 2022, 322: 124296. doi: 10.1016/j.fuel.2022.124296
|