[1] 冯博,卢晓龙,王峰.综采工作面采煤机在不同区域粉尘逸散规律数值模拟[J].煤矿安全,2018,49(11):176-179.
FENG Bo, LU Xiaolong, WANG Feng. Numerical simulation of laws of dust dispersion of coal cutter working at different regions of fully mechanized coal mining face[J]. Safety in Coal Mines, 2018, 49(11): 176-179.
[2] CHANG P, XU G. A review of the health effects and exposure-responsible relationship of diesel particulate matter for underground mines[J]. International Journal of Mining Science and Technology, 2017, 27(5): 831-838. [3] DING J F, ZHOU G, LIU D, et al. Synthesis and performance of a novel high-efficiency coal dust suppressant based on self-healing gel[J]. Environmental Science & Technology, 2020, 54(13): 7992-8000.
[4] 中华人民共和国国家卫生健康委员会.2020年我国卫生健康事业发展统计公报[EB/OL].(2021-07-22)[2022-01-12].http://www.gov.cn/guoqing/2021-07/22/content_5626526.htm.
[5] FAN L, LIU S M. Respirable nano-particulate generations and their pathogenesis in mining workplaces: a review[J]. International Journal of Coal Science & Technology, 2021, 8(2): 179-198.
[6] 武文宾.基于弹塑性损伤的软煤水压致裂渗流耦合数值模型[J].山东科技大学学报,2021,40(5):69-76.
WU Wenbin. Coupled numerical model of hydraulic fracturing and seepage of soft coal based on elastoplastic damage[J]. Journal of Shandong University of Science and Technology, 2021, 40(5): 69-76.
[7] GAO R Z, WANG P F, LI Y J, et al. Determination of optimal blowing-to-suction flow ratio in mechanized excavation face with wall-mounted swirling ventilation using numerical simulations[J]. International Journal of Coal Science & Technology, 2021, 8(2): 248-264.
[8] 周刚,张琦,白若男,等.大采高综采面风流-呼尘耦合运移规律CFD数值模拟[J].中国矿业大学学报,2016,45(4): 684-693.
ZHOU Gang, ZHANG Qi, BAI Ruonan, et al. CFD simulation of air-respirable dust coupling migration law at fully mechanized mining face with large mining height[J]. Journal of China University of Mining & Technology, 2016, 45(4): 684-693.
[9] MO J M, YANG J L, MA W, et al. Numerical simulation and field experiment study on onboard dust removal technology based on airflow-dust pollution dispersion characteristics[J]. Environmental science and pollution research international, 2020, 27(2): 1721-1733.
[10] XIU Z H, NIE W, YAN J Y, et al. Numerical simulation study on dust pollution characteristics and optimal dust control air flow rates during coal mine production[J]. Journal of Cleaner Production, 2020, 248(C): 119197.1-119197.12.
[11] 姚锡文,鹿广利,许开立.急倾斜综放工作面不同工序产尘规律的数值模拟及应用[J].煤炭学报,2015, 40(2):389-396.
YAO Xiwen, LU Guangli, XU Kaili. Numerical simulation of dust generation at different procedures in steeply inclined fully-mechanized caving face[J]. Journal of China Coal Society, 2015, 40(2): 389-396.
[12] 汤研,王德明,王和堂.综采工作面粉尘浓度分布模拟研究[J].煤炭技术,2015,34(8): 203-205.
TANG Yan, WANG Deming, WANG Hetang. Numerical simulation on dust concentration on fully mechanized coal face[J]. Coal Technology, 2015, 34(8): 203-205.
[13] YUEZE L, AKHTAR S, SASMITO A P, et al. Prediction of air flow, methane, and coal dust dispersion in a room and pillar mining face[J]. International Journal of Mining Science and Technology, 2017, 27(4): 657-662.
[14] ZHANG T, JING D J, GE S C, et al. Numerical simulation of the dimensional transformation of atomization in a supersonic aerodynamic atomization dust-removing nozzle based on transonic speed compressible flow[J]. International Journal of Coal Science & Technology, 2020, 7(3): 597-610.
[15] WANG H, CHENG W M, SUN B, et al. The impacts of the axial-to-radial airflow quantity ratio and suction distance on air curtain dust control in a fully mechanized coal face[J]. Environmental Science and Pollution Research International, 2018, 25(8): 7808-7822.
[16] GENG F, GUI C G, WANG Y C, et al. Dust distribution and control in a coal roadway driven by an air curtain system: A numerical study[J]. Process Safety and Environmental Protection, 2021, 121(C): 32-42.
[17] YU H, CHANG W, PENG H, et al. An investigation of the nozzle’s atomization dust suppression rules in a fully-mechanized excavation face based on the air- flow-droplet-dust three-phase coupling model[J]. Advanced Powder Technology, 2018, 29(4): 941-956.
|