• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

首山一矿综采工作面煤尘浓度-粒度分布规律研究

李新龙,杨 阳,胡雅婷

李新龙,杨 阳,胡雅婷. 首山一矿综采工作面煤尘浓度-粒度分布规律研究[J]. 煤矿安全, 2023, 54(8): 26-32.
引用本文: 李新龙,杨 阳,胡雅婷. 首山一矿综采工作面煤尘浓度-粒度分布规律研究[J]. 煤矿安全, 2023, 54(8): 26-32.
LI Xinlong. Study on distribution law of coal dust concentration-particle size in fully mechanized mining face of Shoushan No.1 Mine[J]. Safety in Coal Mines, 2023, 54(8): 26-32.
Citation: LI Xinlong. Study on distribution law of coal dust concentration-particle size in fully mechanized mining face of Shoushan No.1 Mine[J]. Safety in Coal Mines, 2023, 54(8): 26-32.

首山一矿综采工作面煤尘浓度-粒度分布规律研究

Study on distribution law of coal dust concentration-particle size in fully mechanized mining face of Shoushan No.1 Mine

  • 摘要: 为了解决综采工作面粉尘污染严重且防治困难的问题,对首山一矿综采工作面粉尘颗粒浓度-粒度分布规律进行研究,并提出了尘源多级多维封闭雾化控除尘技术。结果表明:风流在采煤机滚筒处发生绕流及横移,风速最大达到2.5 m/s,在距采煤机约10 m处趋于平稳;在前滚筒中心下风侧9 m区域内形成高速风流带,平均风速超过2.0 m/s;在距移架10 m内的未移架区采空区形成长达38 m的高浓度粉尘带,浓度约1 629~2 257 mg/m3;前滚筒中心高度附近高浓度粉尘带长度达40 m,浓度约1 590~2 845 mg/m3;在人行道区域,粉尘颗粒粒径为0.25~10 μm,对井下工作人员的呼吸造成巨大干扰。尘源多级多维封闭雾化控除尘技术应用后,现场呼尘平均降尘率为84.68%,总尘平均降尘率为88.52%。
    Abstract: In order to solve the problems of serious dust pollution and difficult dust removal in fully mechanized coal mining face, we conduct research on the concentration and particle size field of dust in the fully mechanized mining face of Shoushan No.1 Mine, propose the dust source multi-level and multi-dimensional closed atomization control dust removal technology. The results show that the air flow occurs around and across the shearer drum, and the wind speed is up to 2.5 m/s, the wind speed tends to be stable at about 10 m away from the shearer; a high-speed wind flow zone was formed in 9 m area downwind of the center of the front drum, with the average wind speed exceeding 2.0 m/s. The high concentration dust belt with a length of 38 m is formed in the goaf of the unmoved frame area within 10 m away from it, and the concentration is between 1 629 mg/m3 and 2 257 mg/m3. The length of the high concentration dust belt near the center height of the front roller reaches 40 m, and the dust concentration in this range is between 1 590 mg/m3 and 2 845 mg/m3. In the pavement area, the particle size ranges from 0.25 μm to 10 μm, causing great disturbance to the breathing of the downhole workers. After the application of dust source multi-stage and multi-dimensional closed atomization control dust removal technology, the average dust reduction rate of on-site exhaled dust was 84.68%, and the average dust reduction rate of total dust was 88.52%.
  • [1] 冯博,卢晓龙,王峰.综采工作面采煤机在不同区域粉尘逸散规律数值模拟[J].煤矿安全,2018,49(11):176-179. FENG Bo, LU Xiaolong, WANG Feng. Numerical simulation of laws of dust dispersion of coal cutter working at different regions of fully mechanized coal mining face[J]. Safety in Coal Mines, 2018, 49(11): 176-179. [2] CHANG P, XU G. A review of the health effects and exposure-responsible relationship of diesel particulate matter for underground mines[J]. International Journal of Mining Science and Technology, 2017, 27(5): 831-838. [3] DING J F, ZHOU G, LIU D, et al. Synthesis and performance of a novel high-efficiency coal dust suppressant based on self-healing gel[J]. Environmental Science & Technology, 2020, 54(13): 7992-8000. [4] 中华人民共和国国家卫生健康委员会.2020年我国卫生健康事业发展统计公报[EB/OL].(2021-07-22)[2022-01-12].http://www.gov.cn/guoqing/2021-07/22/content_5626526.htm. [5] FAN L, LIU S M. Respirable nano-particulate generations and their pathogenesis in mining workplaces: a review[J]. International Journal of Coal Science & Technology, 2021, 8(2): 179-198. [6] 武文宾.基于弹塑性损伤的软煤水压致裂渗流耦合数值模型[J].山东科技大学学报,2021,40(5):69-76. WU Wenbin. Coupled numerical model of hydraulic fracturing and seepage of soft coal based on elastoplastic damage[J]. Journal of Shandong University of Science and Technology, 2021, 40(5): 69-76. [7] GAO R Z, WANG P F, LI Y J, et al. Determination of optimal blowing-to-suction flow ratio in mechanized excavation face with wall-mounted swirling ventilation using numerical simulations[J]. International Journal of Coal Science & Technology, 2021, 8(2): 248-264. [8] 周刚,张琦,白若男,等.大采高综采面风流-呼尘耦合运移规律CFD数值模拟[J].中国矿业大学学报,2016,45(4): 684-693. ZHOU Gang, ZHANG Qi, BAI Ruonan, et al. CFD simulation of air-respirable dust coupling migration law at fully mechanized mining face with large mining height[J]. Journal of China University of Mining & Technology, 2016, 45(4): 684-693. [9] MO J M, YANG J L, MA W, et al. Numerical simulation and field experiment study on onboard dust removal technology based on airflow-dust pollution dispersion characteristics[J]. Environmental science and pollution research international, 2020, 27(2): 1721-1733. [10] XIU Z H, NIE W, YAN J Y, et al. Numerical simulation study on dust pollution characteristics and optimal dust control air flow rates during coal mine production[J]. Journal of Cleaner Production, 2020, 248(C): 119197.1-119197.12. [11] 姚锡文,鹿广利,许开立.急倾斜综放工作面不同工序产尘规律的数值模拟及应用[J].煤炭学报,2015, 40(2):389-396. YAO Xiwen, LU Guangli, XU Kaili. Numerical simulation of dust generation at different procedures in steeply inclined fully-mechanized caving face[J]. Journal of China Coal Society, 2015, 40(2): 389-396. [12] 汤研,王德明,王和堂.综采工作面粉尘浓度分布模拟研究[J].煤炭技术,2015,34(8): 203-205. TANG Yan, WANG Deming, WANG Hetang. Numerical simulation on dust concentration on fully mechanized coal face[J]. Coal Technology, 2015, 34(8): 203-205. [13] YUEZE L, AKHTAR S, SASMITO A P, et al. Prediction of air flow, methane, and coal dust dispersion in a room and pillar mining face[J]. International Journal of Mining Science and Technology, 2017, 27(4): 657-662. [14] ZHANG T, JING D J, GE S C, et al. Numerical simulation of the dimensional transformation of atomization in a supersonic aerodynamic atomization dust-removing nozzle based on transonic speed compressible flow[J]. International Journal of Coal Science & Technology, 2020, 7(3): 597-610. [15] WANG H, CHENG W M, SUN B, et al. The impacts of the axial-to-radial airflow quantity ratio and suction distance on air curtain dust control in a fully mechanized coal face[J]. Environmental Science and Pollution Research International, 2018, 25(8): 7808-7822. [16] GENG F, GUI C G, WANG Y C, et al. Dust distribution and control in a coal roadway driven by an air curtain system: A numerical study[J]. Process Safety and Environmental Protection, 2021, 121(C): 32-42. [17] YU H, CHANG W, PENG H, et al. An investigation of the nozzle’s atomization dust suppression rules in a fully-mechanized excavation face based on the air- flow-droplet-dust three-phase coupling model[J]. Advanced Powder Technology, 2018, 29(4): 941-956.
  • 期刊类型引用(3)

    1. 刘雄,杨桐,李雪峰,薛挺,孟庆林. 基于粉尘浓度实时监测的采煤机尘源跟踪喷雾参数智能调控技术研究. 煤矿机械. 2024(03): 172-175 . 百度学术
    2. 杨文博,马威,杨宏飞,李亚军,张彪. 中厚煤层综采工作面产尘扩散规律及治理技术研究. 煤矿机械. 2024(03): 55-58 . 百度学术
    3. 崔志芳. 连续采煤机截割块煤产量的数学模型研究. 山西焦煤科技. 2024(04): 40-43+52 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  34
  • HTML全文浏览量:  3
  • PDF下载量:  21
  • 被引次数: 3
出版历程
  • 网络出版日期:  2023-09-04
  • 刊出日期:  2023-09-04

目录

    /

    返回文章
    返回