• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

神南矿区浅埋近距离煤层开采覆岩导水断裂带发育高度研究

谢党虎,王建文,李民峰,郭书全,王二云,马宗宇,杜超杰

谢党虎,王建文,李民峰,郭书全,王二云,马宗宇,杜超杰. 神南矿区浅埋近距离煤层开采覆岩导水断裂带发育高度研究[J]. 煤矿安全, 2023, 54(7): 221-227.
引用本文: 谢党虎,王建文,李民峰,郭书全,王二云,马宗宇,杜超杰. 神南矿区浅埋近距离煤层开采覆岩导水断裂带发育高度研究[J]. 煤矿安全, 2023, 54(7): 221-227.
XIE Danghu. Research on development height of overlying water-conducting fault zone in shallow seam mining in Shennan Mining Area[J]. Safety in Coal Mines, 2023, 54(7): 221-227.
Citation: XIE Danghu. Research on development height of overlying water-conducting fault zone in shallow seam mining in Shennan Mining Area[J]. Safety in Coal Mines, 2023, 54(7): 221-227.

神南矿区浅埋近距离煤层开采覆岩导水断裂带发育高度研究

Research on development height of overlying water-conducting fault zone in shallow seam mining in Shennan Mining Area

  • 摘要: 针对神南矿区浅埋近距离煤层重复采动覆岩导水裂隙可能导通含水层,诱发突水灾害问题,采用理论分析、相似模拟、数值模拟和现场钻孔实测方法研究了柠条塔矿近距离1-2煤和2-2煤开采覆岩导水断裂带发育规律;1-2煤充分采动时,覆岩断裂带高度约为50 m,尚未与第四系松散孔隙潜水和侏罗系风化基岩承压水连通;当1-2煤和2-2煤重复采动时,理论预测导水断裂带高度约为136 m,物理和数值模拟得知覆岩断裂带发育高度约为140 m,现场钻孔实测导水断裂带的高度约为135 m,三者非常吻合,断裂带与侏罗系风化基岩承压水连通。提出了超前工作面300 m从回采巷道向侏罗系风化基岩打钻孔疏放承压水的措施,现场实践表明:2-2煤开采过程中未发生突水溃沙事故。
    Abstract: Aiming at the fact that the water-conducting fissures in the overlying rock may cut through aquifers and induce water inrush disasters by repeated mining of shallow-buried and short-distance coal seams in Shennan Mining Area, this paper adopts the methods of similarity simulation, numerical simulation and field drilling measurement to study the short-distance 1-2 coal and 2-2 coal mining overlying rock water-conducting fracture zone development law. When the 1-2 coal is fully mined, the height of the overlying fissure zone is about 50 m, and it is not connected with the upper quaternary loose pore water and the Jurassic weathered bedrock confined water; when the 1-2 coal and 2-2 coal are in repeated mining, the theoretical prediction of the water-conducting fault zone is about 136 m, the development height of the overburden fault zone is about 140 m according to the physical and numerical simulation, and the height of the water-conducting fault zone measured by the field borehole is about 135 m. The three are very consistent, and the fault zone is connected with the confined water of Jurassic weathered bedrock. The measures of dredging confined water from mining roadway to weathered bedrock of Jurassic at 300 m in advance working face areproposed. The field practice shows that no accident of water inrush and sand collapse occurs in the process of coal mining.
  • [1] 侯恩科,张萌,孙学阳,等.浅埋煤层开采覆岩破坏与导水裂隙带发育高度研究[J].煤炭工程,2021,53(11):102-107. HOU Enke, ZHANG Meng, SUN Xueyang, et al. Study on overburden failure and development height of water conducting fracturezone in shallow coal seam mining[J]. Coal Engineering, 2021, 53(11): 102-107. [2] 范立民,马雄德,冀瑞君.西部生态脆弱矿区保水采煤研究与实践进展[J]. 煤炭学报,2015,40(8):1711-1717. FAN Limin, MA Xiongde, JI Ruijun. Progress in engineering practice of water-preserved coal mining in western eco-environment frangible area[J]. Journal of China Coal Society, 2015, 40(8): 1711-1717. [3] 王双明,黄庆享,范立民,等.生态脆弱矿区含(隔)水层特征及保水开采分区研究[J].煤炭学报,2010,35(1):7-14. WANG Shuangming, HUANG Qingxiang, FAN Limin, et al. Study on overburden aquclude and water protectionmining regionazation in the ecological fragile mining area[J]. Journal of China Coal Society, 2010, 35(1): 7-14. [4] 马雄德,王苏健,蒋泽泉,等.神南矿区采煤导水裂隙带高度预测[J].西安科技大学学报,2016,36(5):664-668. MA Xiongde, WANG Sujian, JIANG Zequan, et al. Prediction on the height of water-flowing fractured zone in southern Shenmu mine[J]. Journal of Xi’an University of Science and Technology, 2016, 36(5): 664-668. [5] 许家林,朱卫兵,王晓振.基于关键层位置的导水裂隙带高度预计方法[J].煤炭学报,2012,37(5):762-769. XU Jialin, ZHU Weibing, WANG Xiaozhen. New method to predict the height of fractured water-conducting zone by location of key strata[J]. Journal of China Coal Society, 2012, 37(5): 762-769. [6] 黄庆享,张沛,董爱菊.浅埋煤层地表厚砂土层“拱梁”结构模型研究[J].岩土力学,2009,30(9):2722-2726. HUANG Qingxiang, ZHANG Pei, DONG Aiju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. Rock and Soil Mechanics, 2009, 30(9): 2722-2726. [7] 黄庆享,唐朋飞.浅埋煤层大采高工作面顶板结构分析[J].采矿与安全工程学报,2017,34(2):282-286. HUANG Qingxiang, TANG Pengfei. Roof structure analysis on large mining height longwall face in shallow coal seam[J]. Journal of Mining & Safety Engineering, 2017, 34(2): 282-286. [8] 黄庆享,周金龙,马龙涛,等.近浅埋煤层大采高工作面双关键层结构分析[J].煤炭学报,2017,42(10):2504-2510. HUANG Qingxiang, ZHOU Jinlong, MA Longtao, et al. Double key strata structure analysis of large mining height longwall face in nearly shallow coal seam[J]. Journal of China Coal Society, 2017, 42(10): 2504-2510. [9] GUO Wenbing, ZHAO Gaobo, LOU Gaozhong, et al. A new method of predicting the height of the fractured water- conducting zone due to high-intensity longwallcoal mining in China[J]. Journal of Rock Mechanics and Rock Engineering, 2019, 52(8): 2789-2802. [10] 许峰,靳德武,高振宇,等.煤炭高强度重复采动下地下水资源漏失规律研究[J].煤炭科学技术,2022,50(11):131-139. XU Feng, JIN Dewu, GAO Zhenyu, et al. Study on law of groundwater resources leakage under high intensity repeated mining[J]. Coal Science and Technology, 2022, 50(11): 131-139. [11] 康国彪,卞涛,蒲平武.大采高工作面覆岩导水裂隙带发育高度及其影响因素研究[J].煤炭科学技术,2021,49(S2):19-24. KANG Guobiao, BIAN Tao, PU Pingwu. Study on development height and influencing factors of overburden water conducting fracture zone in large mining height face[J]. Coal Science and Technology, 2021, 49(S2): 19-24. [12] 杨达明,郭文兵,赵高博,等.厚松散层软弱覆岩下综放开采导水裂隙带发育高度[J].煤炭学报,2019,44(11):3308-3316. YANG Daming, GUO Wenbing, ZHAO Gaobo, et al. Height of water-conducting zone in longwall top-coal caving mining under thick alluvium and soft overburden[J]. Journal of China Coal Society, 2019, 44(11): 3308-3316. [13] 左建平,孙运江,钱鸣高.厚松散层覆岩移动机理及“类双曲线”模型研究[J].煤炭学报,2017,42(6):1372-1379. ZUO Jianping, SUN Yunjiang, QIAN Minggao. Movement mechanism and analogous hyperbola model of overlying strata with thick alluvium[J]. Journal of China Coal Society, 2017, 42(6): 1372-1379. [14] SUN Yunjiang, ZUO Jianping, WANG Jintao, et al. Investigation of movement and damage of integral overburden during shallow coal seam mining[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 63-75. [15] SUN Yunjiang, ZUO Jianping, Murat Karakus, et al. A novel method for predicting movement and damage of overburden caused by shallow coal mining[J]. Rock Mechanics and Rock Engineering, 2019, 53: 1545-1563.
  • 期刊类型引用(2)

    1. 高亮,韩强,方刚. 柠条塔煤矿工作面顶板烧变岩水害防治技术应用. 陕西煤炭. 2024(08): 112-118 . 百度学术
    2. 张传宝,蔡来良,王巍,柴华彬,邹友峰,张文志. 高强度重复开采覆岩与地表移动机理. 金属矿山. 2024(07): 173-180 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  13
  • HTML全文浏览量:  0
  • PDF下载量:  9
  • 被引次数: 3
出版历程
  • 网络出版日期:  2023-09-03

目录

    /

    返回文章
    返回