[1] 侯恩科,张萌,孙学阳,等.浅埋煤层开采覆岩破坏与导水裂隙带发育高度研究[J].煤炭工程,2021,53(11):102-107.
HOU Enke, ZHANG Meng, SUN Xueyang, et al. Study on overburden failure and development height of water conducting fracturezone in shallow coal seam mining[J]. Coal Engineering, 2021, 53(11): 102-107.
[2] 范立民,马雄德,冀瑞君.西部生态脆弱矿区保水采煤研究与实践进展[J]. 煤炭学报,2015,40(8):1711-1717.
FAN Limin, MA Xiongde, JI Ruijun. Progress in engineering practice of water-preserved coal mining in western eco-environment frangible area[J]. Journal of China Coal Society, 2015, 40(8): 1711-1717.
[3] 王双明,黄庆享,范立民,等.生态脆弱矿区含(隔)水层特征及保水开采分区研究[J].煤炭学报,2010,35(1):7-14.
WANG Shuangming, HUANG Qingxiang, FAN Limin, et al. Study on overburden aquclude and water protectionmining regionazation in the ecological fragile mining area[J]. Journal of China Coal Society, 2010, 35(1): 7-14.
[4] 马雄德,王苏健,蒋泽泉,等.神南矿区采煤导水裂隙带高度预测[J].西安科技大学学报,2016,36(5):664-668.
MA Xiongde, WANG Sujian, JIANG Zequan, et al. Prediction on the height of water-flowing fractured zone in southern Shenmu mine[J]. Journal of Xi’an University of Science and Technology, 2016, 36(5): 664-668.
[5] 许家林,朱卫兵,王晓振.基于关键层位置的导水裂隙带高度预计方法[J].煤炭学报,2012,37(5):762-769.
XU Jialin, ZHU Weibing, WANG Xiaozhen. New method to predict the height of fractured water-conducting zone by location of key strata[J]. Journal of China Coal Society, 2012, 37(5): 762-769.
[6] 黄庆享,张沛,董爱菊.浅埋煤层地表厚砂土层“拱梁”结构模型研究[J].岩土力学,2009,30(9):2722-2726.
HUANG Qingxiang, ZHANG Pei, DONG Aiju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. Rock and Soil Mechanics, 2009, 30(9): 2722-2726.
[7] 黄庆享,唐朋飞.浅埋煤层大采高工作面顶板结构分析[J].采矿与安全工程学报,2017,34(2):282-286.
HUANG Qingxiang, TANG Pengfei. Roof structure analysis on large mining height longwall face in shallow coal seam[J]. Journal of Mining & Safety Engineering, 2017, 34(2): 282-286.
[8] 黄庆享,周金龙,马龙涛,等.近浅埋煤层大采高工作面双关键层结构分析[J].煤炭学报,2017,42(10):2504-2510.
HUANG Qingxiang, ZHOU Jinlong, MA Longtao, et al. Double key strata structure analysis of large mining height longwall face in nearly shallow coal seam[J]. Journal of China Coal Society, 2017, 42(10): 2504-2510.
[9] GUO Wenbing, ZHAO Gaobo, LOU Gaozhong, et al. A new method of predicting the height of the fractured water- conducting zone due to high-intensity longwallcoal mining in China[J]. Journal of Rock Mechanics and Rock Engineering, 2019, 52(8): 2789-2802.
[10] 许峰,靳德武,高振宇,等.煤炭高强度重复采动下地下水资源漏失规律研究[J].煤炭科学技术,2022,50(11):131-139.
XU Feng, JIN Dewu, GAO Zhenyu, et al. Study on law of groundwater resources leakage under high intensity repeated mining[J]. Coal Science and Technology, 2022, 50(11): 131-139.
[11] 康国彪,卞涛,蒲平武.大采高工作面覆岩导水裂隙带发育高度及其影响因素研究[J].煤炭科学技术,2021,49(S2):19-24.
KANG Guobiao, BIAN Tao, PU Pingwu. Study on development height and influencing factors of overburden water conducting fracture zone in large mining height face[J]. Coal Science and Technology, 2021, 49(S2): 19-24.
[12] 杨达明,郭文兵,赵高博,等.厚松散层软弱覆岩下综放开采导水裂隙带发育高度[J].煤炭学报,2019,44(11):3308-3316.
YANG Daming, GUO Wenbing, ZHAO Gaobo, et al. Height of water-conducting zone in longwall top-coal caving mining under thick alluvium and soft overburden[J]. Journal of China Coal Society, 2019, 44(11): 3308-3316.
[13] 左建平,孙运江,钱鸣高.厚松散层覆岩移动机理及“类双曲线”模型研究[J].煤炭学报,2017,42(6):1372-1379.
ZUO Jianping, SUN Yunjiang, QIAN Minggao. Movement mechanism and analogous hyperbola model of overlying strata with thick alluvium[J]. Journal of China Coal Society, 2017, 42(6): 1372-1379.
[14] SUN Yunjiang, ZUO Jianping, WANG Jintao, et al. Investigation of movement and damage of integral overburden during shallow coal seam mining[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 63-75.
[15] SUN Yunjiang, ZUO Jianping, Murat Karakus, et al. A novel method for predicting movement and damage of overburden caused by shallow coal mining[J]. Rock Mechanics and Rock Engineering, 2019, 53: 1545-1563.
|