不同粒径与压力下煤粒瓦斯吸附数学模型研究
Study on mathematical model of coal particles gas adsorption under different particle sizes and pressures
-
摘要: 采用煤粒进行瓦斯吸附实验是研究煤基质瓦斯流动机理的基本手段。为探究煤粒形状对煤体瓦斯吸附规律的影响,设计煤粒瓦斯恒温定压吸附实验,得到4种粒度的煤样在不同瓦斯压力下的吸附特征。基于煤基质游离瓦斯密度梯度扩散理论,分别建立圆柱形和球形煤粒瓦斯定压吸附数学模型,并通过有限差分法进行编程解算,后用实验数据来验证模拟结果。发现将煤粒视作球形和圆柱形得到的模拟结果均与实验结果匹配程度较高,证明了煤基质游离瓦斯密度梯度扩散理论的准确性和可靠性;煤样粒径增加时,微孔道扩散系数增大;瓦斯吸附压力对微孔道扩散系数的影响较小,微孔道扩散系数摆脱对瓦斯吸附压力和吸附时间的依赖;相对来说,煤粒的形状对瓦斯吸附数学模型的预测精度影响不大,但2种模型的微孔道扩散系数存在显著差异;当瓦斯吸附压力与煤样粒径固定时,圆柱形煤粒的微孔道扩散系数大于球形煤粒的微孔道扩散系数,约为2倍,主要是由于2种形状有效扩散截面积的差异性。Abstract: Gas adsorption experiment with coal particles is a basic means to study the gas flow mechanism of coal matrix. In order to explore the influence of coal particle shape on coal gas adsorption law, a constant temperature and pressure adsorption experiment was designed to obtain the adsorption characteristics of coal samples with four particle sizes under different gas pressures. Based on the gradient diffusion theory of free gas density in coal matrix, the mathematical models of constant pressure adsorption of cylindrical and spherical coal gas were established respectively, and solved by finite difference method, and the simulation results were verified by experimental data. It is found that the simulation results obtained by considering the coal particles as spherical or cylindrical have a good match with the experimental results, which proves the accuracy and reliability of the gradient diffusion theory of free gas density in coal matrix. The diffusion coefficient increases with the increase of coal particle size. The influence of gas adsorption pressure on the diffusion coefficient of micropore is small, and the diffusion coefficient of difference of surface area between the two shapes.
-
-
[1] 刘见中,孙海涛,雷毅,等.煤矿区煤层气开发利用新技术现状及发展趋势[J].煤炭学报,2020,45(1):258-267. LIU Jianzhong, SUN Haitao, LEI Yi, et al. Current situation and development trend of coalbed methane development and utilization technology in coal mine area[J]. Journal of China Coal Society, 2020, 45(1): 258-267. [2] KARACAN C ?魻, RUIZ F A, COTE M, et al. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction[J]. International Journal of Coal Geology, 2011, 86(2): 121-156. [3] 赵耀江,谢生荣,温百根,等.高瓦斯煤层群顶板大直径千米钻孔抽采技术[J].煤炭学报,2009,34(6):797-801. ZHAO Yaojiang, XIE Shengrong, WEN Baigen, et al. Gas drainage technique by 1 000 m long and large diameter roof boreholes in high gas coal seam group[J]. Journal of China Coal Society, 2009, 34(6): 797-801. [4] WANG C, LIU J, FENG J, et al. Effects of gas diffusion from fractures to coal matrix on the evolution of coal strains: experimental observations[J]. International Journal of Coal Geology, 2016, 162: 74-84. [5] 刘彦伟,刘明举.粒度对软硬煤粒瓦斯解吸扩散差异性的影响[J].煤炭学报,2015,40(3):579-587. LIU Yanwei, LIU Mingju. Effect of particle size on difference of gas desorption and diffusion between soft coal and hard coal[J]. Journal of China Coal Society, 2015, 40(3): 579-587. [6] LIU T, LIN B. Time-dependent dynamic diffusion processes in coal: Model development and analysis[J]. International Journal of Heat and Mass Transfer, 2019, 134(5): 1-9. [7] LIU H, MOU J, CHENG Y. Impact of pore structure on gas adsorption and diffusion dynamics for long-flame coal[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 203-213. [8] 张群.煤层气储层数值模拟模型及应用的研究[D].北京:煤炭科学研究总院,2002. [9] PAN Z, CONNELL L D, CAMILLERI M, et al. Effects of matrix moisture on gas diffusion and flow in coal[J]. Fuel, 2010, 89(11): 3207-3217. [10] 秦跃平,郝永江,王亚茹,等.基于两种数学模型的煤粒瓦斯放散数值解算[J].中国矿业大学学报,2013, 42(6):923-928. QIN Yueping, HAO Yongjiang, WANG Yaru, et al. Numerical solution of gas emission in coal particle based on two kinds of mathematical model[J]. Journal of China University of Mining & Technology, 2013, 42(6): 923-928. [11] 刘彦伟.煤粒瓦斯放散规律、机理与动力学模型研究[D].焦作:河南理工大学,2011. [12] 李志强,刘勇,许彦鹏,等.煤粒多尺度孔隙中瓦斯扩散机理及动扩散系数新模型[J].煤炭学报,2016,41(3):633-643. LI Zhiqiang, LIU Yong, XU Yanpeng, et al. Gas diffusion mechanism in multi-scale pores of coal particles and new diffusion model of dynamic diffusion coefficient[J]. Journal of China Coal Society, 2016, 41(3): 633-643. [13] ZHAO W, CHENG Y, JIANG H, et al. Modeling and experiments for transient diffusion coefficients in the desorption of methane through coal powders[J]. International Journal of Heat and Mass Transfer, 2017, 110: 845-854. [14] 秦跃平,王翠霞,王健,等.煤粒瓦斯放散数学模型及数值解算[J].煤炭学报,2012,37(9):1466-1471. QIN Yueping, WANG Cuixia, WANG Jian, et al. Mathematical model of gas emission in coal particles and the numerical solution[J]. Journal of China Coal Society, 2012, 37(9): 1466-1471. [15] 秦跃平,王健,郑赟,等.煤粒瓦斯变压吸附数学模型及数值解算[J].煤炭学报,2017,42(4):923-928. QIN Yueping, WANG Jian, ZHENG Yun, et al. Coal particle gas adsorption mathematical model and numerical solution under variable pressures[J]. Journal of China Coal Society, 2017, 42(4): 923-928. [16] 秦跃平,郝永江,刘鹏,等.封闭空间内煤粒瓦斯解吸实验与数值模拟[J].煤炭学报,2015,40(1):87-92. QIN Yueping, HAO Yongjiang, LIU Peng, et al. Coal particle gas desorption experiment and numerical simulation in enclosed space[J]. Journal of China Coal Society, 2015, 40(1): 87-92. [17] LIU W, HE C, QIN Y, et al. Inversion of gas permeability coefficient of coal particle based on Darcy's permeation model and relevant parameters analysis[J]. Journal of Natural Gas Science and Engineering, 2017, 50: 240-249. [18] WANG K, DU F, WANG G. Investigation of gas pressure and temperature effects on the permeability and steady-state time of chinese anthracite coal: An experimental study[J]. Journal of Natural Gas Science and Engineering, 2017, 40: 179-188. [19] QIN Y, XU H, LIU W, et al. Time and pressure-independent gas transport behavior in coal matrix: Model development and improvement[J]. Energy & Fuels, 2020, 34(8): 9355-9370. [20] LIU W, QIN Y, ZHAO W, et al. Modeling of gas transport driven by density gradients of free gas within a coal matrix: perspective of isothermal adsorption[J]. Energy & Fuels, 2020, 34(11): 13728-13739. [21] 李建功.不同煤屑形状对瓦斯解吸扩散规律影响的数学模拟[J].煤矿安全,2015,46(1):1-4. LI Jiangong. Mathematical simulation of effect of different coal particle shapes on gas desorption diffusion law[J]. Safety in Coal Mines, 2015, 46(1): 1-4. [22] 杨其銮,王佑安.瓦斯球向流动的数学模拟[J].中国矿业学院学报,1988(3):58-64. YANG Qiluan, WANG Youan. Mathematical simulation of the radial methane flow in spherical coal grains[J]. Journal of China University of Mining & Technology, 1988(3): 58-64. [23] 苏恒.基于球状模型颗粒煤瓦斯扩散规律实验研究[D].焦作:河南理工大学,2015. [24] 张飞燕,韩颖.煤屑瓦斯扩散规律研究[J].煤炭学报,2013,38(9):1589-1596. ZHANG Feiyan, HAN Ying. Research on the law of gas diffusion from drill cuttings[J]. Journal of China Coal Society, 2013, 38(9): 1589-1596.
-
期刊类型引用(4)
1. 申晓静,岳基伟,梁跃辉,王辰,徐金林,韩奇峻. 高温高压氛围下煤体吸附瓦斯特性研究. 中国安全科学学报. 2024(02): 176-184 . 百度学术
2. 路璐,梁忠秋,李改革. 瓦斯抽采钻孔漏气规律现场试验研究. 煤炭技术. 2024(09): 173-177 . 百度学术
3. 许慧敏. 温度和压力对煤样瓦斯吸附解吸的影响规律研究. 煤. 2024(12): 5-8 . 百度学术
4. 段春生,王大鹏,赵树宇,穆效治. 煤体理化性质对硫化氢吸附的影响研究. 山西煤炭. 2023(04): 33-40 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 13
- HTML全文浏览量: 1
- PDF下载量: 6
- 被引次数: 4