• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

基于FAHP—变异系数法的风化基岩含水层富水性评价

白 阳,牛 超,李 钒,项 敏,赵淑慧

白 阳,牛 超,李 钒,项 敏,赵淑慧. 基于FAHP—变异系数法的风化基岩含水层富水性评价[J]. 煤矿安全, 2023, 54(8): 143-149.
引用本文: 白 阳,牛 超,李 钒,项 敏,赵淑慧. 基于FAHP—变异系数法的风化基岩含水层富水性评价[J]. 煤矿安全, 2023, 54(8): 143-149.
BAI Yang. Water abundance evaluation of weathered bedrock aquifers based on FAHP and coefficient of variance method[J]. Safety in Coal Mines, 2023, 54(8): 143-149.
Citation: BAI Yang. Water abundance evaluation of weathered bedrock aquifers based on FAHP and coefficient of variance method[J]. Safety in Coal Mines, 2023, 54(8): 143-149.

基于FAHP—变异系数法的风化基岩含水层富水性评价

Water abundance evaluation of weathered bedrock aquifers based on FAHP and coefficient of variance method

  • 摘要: 陕北侏罗系煤田基岩顶部风化作用强烈,形成的风化基岩含水层是该矿井的主要充水水源,对矿井的安全开采造成了严重的威胁,科学评价风化基岩含水层的富水性,对富水性强的区域进行超前疏放是顶板风化基岩水害防治的重要措施。以南梁煤矿为例,根据钻孔资料选取风化指数、岩心采取率、脆塑性岩厚度比、岩石结构指数等4个指标构建评价体系,综合使用模糊层次分析法与变异系数法综合赋权,对南梁煤矿风化基岩含水层进行了富水性评价。研究结果表明:南梁煤矿基岩风化程度受古地形影响较强,第四系下伏沟谷对基岩风化带厚度具有控制作用。结合矿井涌水现状验证评价结果,富水区区域涌水量较大。
    Abstract: The weathering at the top of bedrock in Jurassic coalfield in northern Shaanxi is strong, and the formed weathered bedrock aquifer is the main water filling source of the mine, which poses a serious threat to the safe mining of the mine. The scientific evaluation of the water abundance of the weathered bedrock aquifer and the advanced drainage of the areas with strong water abundance are essential measures for preventing and controlling water disasters of the roof weathered bedrock. In this paper, taking Nanliang Coal Mine as an example, according to the drilling data, the weathering index, core recovery rate, brittle-plastic rock thickness ratio and rock structure index are selected to construct the evaluation system. The fuzzy analytic hierarchy process and coefficient of variation method are used to weigh comprehensively, and the water abundance of weathered bedrock aquifer in Nanliang Coal Mine is evaluated. The results show that the weathering degree of bedrock in Nanliang Coal Mine is strongly affected by ancient terrain, and the underlying Quaternary gully controls the thickness of the bedrock weathering zone. Combined with the evaluation results of mine water inrush status, the water inflow in the water-rich area is large.
  • [2] 侯恩科,童仁剑,王苏健,等.陕北侏罗纪煤田风化基岩富水性Fisher模型预测方法[J].煤炭学报,2016, 41(9):2312-2318. HOU Enke, TONG Renjian, WANG Sujian, et al. Prediction method for the water enrichment of weathered bedrock based on Fisher model in Northern Shaaxi Jurassic Coalfield[J]. Journal of China Coal Society, 2016, 41(9): 2312-2318. [3] 侯恩科,闫鑫,郑永飞,等.Bayes判别模型在风化基岩富水性预测中的应用[J].西安科技大学学报,2019, 39(6):942-949. HOU Enke, YAN Xin, ZHENG Yongfei, et al. Appli-cation of Bayes discriminant model in prediction of water enrichment of weathered bedrock[J]. Journal of Xi’an University of Science and Technology, 2019, 39(6): 942-949. [4] 武强,樊振丽,刘守强,等.基于GIS的信息融合型含水层富水性评价方法——富水性指数法[J].煤炭学报,2011,36(7):1124-1128. WU Qiang, FAN Zhenli, LIU Shouqiang, et al. Water-richness evaluation method of water-filled aquifer based on the principle of information fusion with GIS: water-richness index method[J]. Journal of China Coal Society, 2011, 36(7): 1124-1128. [5] 侯恩科,纪卓辰,车晓阳,等.基于改进AHP和熵权法耦合的风化基岩富水性预测方法[J].煤炭学报,2019,44(10):3164-3173. HOU Enke, JI Zhuochen, CHE Xiaoyang, et al. Water abundance prediction method of weathered bedrock based on improved AHP and the entropy weight method[J]. Journal of China Coal Society, 2019, 44(10): 3164-3173. [6] 毕尧山,吴基文,翟晓荣,等.基于AHP与独立性权系数综合确权的煤矿含水层富水性评价[J].水文,2020,40(4):40-45. BI Yaoshan, WU Jiwen, ZHAI Xiaorong, et al. Evaluation of coal mine aquifer water-richness based on AHP and independent weight coefficient method[J]. Journal of China Hydrology, 2020, 40(4): 40-45. [7] 张桂欣,孙柏涛.基于模糊层次分析的建筑物单体震害预测方法研究[J].工程力学,2018,35(12):185-193. ZHANG Guixin, SUN Baitao. Seismic damage predi-ction for a single building based on a fuzzy analytical hierarchy approach[J]. Engineering Mechanics, 2018, 35(12): 185-193. [8] 李博.GRA—FAHP模型的煤层底板突水危险性评价[J].地质论评,2015,61(5):1128-1134. LI Bo. Risk assessment model of coal floor water-irruption based on GRA-FAHP[J]. Geological Review, 2015, 61(5): 1128-1134. [9] 姬东朝,宋笔锋,喻天翔.模糊层次分析法及其在设计方案选优中的应用[J].系统工程与电子技术,2006(11):1692-1694. JI Dongchao, SONG Bifeng, YU Tianxiang. FAHP and its application in the selection of design scheme[J]. Systems Engineering and Electronics, 2006(11): 1692-1694. [10] 潘国营,杜鹏卓,陈国胜.基于EW-FAHP的煤层底板承压水突水危险评价[J].水文地质工程地质,2017,44(1):131-136. PAN Guoying, DU Pengzhuo, CHEN Guosheng. Risk evaluation of confined water-inrush from coal seam floor based on EW-FAHP[J]. Hydrogeology & Engineering Geology, 2017, 44(1): 131-136. [11] 严嘉伦,林俊光,楼可炜,等.基于AHP-变异系数法的楼宇型综合能源系统评价体系[J].热力发电,2019,48(12):25-30. YAN Jialun, LIN Junguang, LOU Kewei, et al. Evaluation system for building integrated energy system based on AHP-CV method[J]. Thermal Power Generation, 2019, 48(12): 25-30. [12] 冯书顺,武强.基于AHP-变异系数法综合赋权的含水层富水性研究[J].煤炭工程,2016,48(S2):138-140. FENG Shushun, WU Qiang. Research on water-richness of aquifer using comprehensive weight method based on AHP and variation coefficient[J]. Coal Engineering, 2016, 48(S2): 138-140. [13] 邱梅,施龙青,滕超,等.基于灰色关联-FDAHP法与物探成果相结合的奥灰富水性评价[J].岩石力学与工程学报,2016,35(S1):3203-3213. QIU Mei, SHI Longqing, TENG Chao, et al. Water-richness evaluation of ordovician limestone based on grey correlation analysis, FDAHP and geophysical exploration[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 3203-3213. [14] 殷德威,翟所宏,刘勇.基于岩性结构指数法的砂岩含水层富水性评价[C]//第十届全国采矿学术会议论文集——专题一:采矿与井巷工程.北京:中国煤炭学会,2015:518-521. [15] 石守桥,魏久传,尹会永,等.济三煤矿煤层顶板砂岩含水层富水性预测[J].煤田地质与勘探,2017,45(5):100-104. SHI Shouqiao, WEI Jiuchuan, YIN Huiyong, et al. Forecasting of water abundance of coal roof sandstone aquifer in Jining No.3 Mine[J]. Coal Geology & Exploration, 2017, 45(5): 100-104.
计量
  • 文章访问数:  20
  • HTML全文浏览量:  0
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 网络出版日期:  2023-09-04
  • 刊出日期:  2023-09-04

目录

    /

    返回文章
    返回