厚硬顶板冲击地压发生机理及防治实践
Mechanism and prevention practice of rock burst in thick and hard roof
-
摘要: 基于鄂尔多斯地区冲击地压矿井厚硬顶板加坚硬煤层的特征,对宽煤柱开采条件下冲击地压发生过程进行分析,揭示了该区域冲击地压是由厚硬顶板破断引起煤体高应力区动力系统失稳产生震动、激发应力波,应力波与塑性区煤体相互作用而产生的;以巴彦高勒煤矿为例,采用深孔爆破对巷道顶板进行卸压。结果表明:在未断顶区域,顶板发生极限破断引发大能量微震事件,能量释放集中在沿空巷侧,现场存在动压显现现象;在正常断顶区域,微震活动比较平稳,能量集中区未对巷道形成直接影响;工作面来压周期平均2.4 d,来压步距14.5 m,未出现持续性高强度来压;顶板观测孔裂隙发育良好,有效半径可达4 m。Abstract: Based on the characteristics of thick hard roof and hard coal seam of rock burst mine in Ordos area, the occurrence process of rock burst under the condition of wide coal pillar mining was analyzed. It is revealed that the rock burst in this region is caused by the dynamic system instability in the high stress region of coal body, vibration, stress wave excitation, stress wave interaction with the coal body in the plastic region. Taking Bayangaole Coal Mine as an example, deep hole blasting was used to relieve the pressure on the roadway roof. The results showed that in the area where the roof was not broken, the limit breaking of the roof leaded to large energy micro-seismic events, the energy release was concentrated on the side along the empty roadway, and there was a phenomenon of dynamic pressure on site. In the normal fault roof area, the micro-seismic activity was relatively stable, and the energy concentration area had no direct impact on the roadway. The average pressure period of the working face was 2.4 days, the pressure step was 14.5 m, and there was no continuous high-intensity pressure. The crack of the observation hole in the roof was well developed, and the effective radius could reach 4 m.
-
-
[1] 王宁, 姜耀东, 朱登元, 等.坚硬煤岩组合体变形破坏特征及冲击特性研究[J].长江科学院院报, 2018, 35(3): 65-69. WANG Ning, JIANG Yaodong, ZHU Dengyuan, et al. Failure and coal bumps characteristics of hard roof-coal structure[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(3): 65-69.
[2] 赵毅鑫, 姜耀东, 王涛, 等.“两硬”条件下冲击地压微震信号特征及前兆识别[J].煤炭学报, 2012, 37(12): 1960-1966. ZHAO Yixin, JIANG Yaodong, WANG Tao, et al. Features of microseismic events and precursors of rock burst in underground coal mining with hard roof[J]. Journal of China Coal Society, 2012, 37(12): 1960-1966.
[3] 谭云亮, 张明, 徐强, 等.坚硬顶板型冲击地压发生机理及监测预警研究[J].煤炭科学技术, 2019, 47(1): 166-172. TAN Yunliang, ZHANG Ming, XU Qiang, et al. Study on occurrence mechanism and monitoring and early warning of rock burst caused by hard roof[J]. Coal Science and Technology, 2019, 47(1): 66-172.
[4] 牟宗龙, 窦林名, 李慧民, 等.顶板岩层特性对煤体冲击影响的数值模拟[J].采矿与安全工程学报, 2009, 26(1): 25-30. MU Zonglong, DOU Linming, LI Huimin, et al. Numerical simulation of roof stratum effect on coal mass burst[J]. Journal of Mining & Safety Engineering, 2009, 26(1): 25-30.
[5] 齐庆新, 欧阳振华, 赵善坤, 等.我国冲击地压矿井类型及防治方法研究[J].煤炭科学技术, 2014, 42(10): 1-5. QI Qingxin, OUYANG Zhenhua, ZHAO Shankun, et al. Study on types of rock burst mine and prevention methods in China[J]. Coal Science and Technology, 2014, 42(10): 1-5.
[6] 赵善坤.深孔顶板预裂爆破与定向水压致裂防冲适用性对比分析[J].采矿与安全工程学报, 2021, 38(4): 706-719. ZHAO Shankun. A comparative analysis of deep hole roof pre-blasting and directional hydraulic fracture for rockburst control[J]. Journal of Mining & Safety Engineering, 2021, 38(4): 706-719.
[7] 欧阳振华, 齐庆新, 刘军, 等.基于“三因素”机理的深孔断顶爆破防冲技术研究[C]//2013年煤炭开采与安全国际学术研讨会论文集.北京: 中国煤炭学会, 2013: 3-9. [8] 左建平, 孙运江, 刘文岗, 等.浅埋大采高工作面顶板初次断裂爆破机理与力学分析[J].煤炭学报, 2016, 41(9): 2165-2172. ZUO Jianping, SUN Yunjiang, LIU Wengang, et al. Mechanical analysis and blasting mechanism of main roof initial fracturing in shallow depth mining face with large cutting height[J]. Journal of China Coal Society, 2016, 41(9): 2165-2172.
[9] 温颖远, 郭志刚, 曹安业, 等.基于微震数据评价的顶板深孔爆破卸压效果分析[J].煤炭科学技术, 2020(6): 57-63. WEN Yingyuan, GUO Zhigang, CAO Anye, et al. Analysis of prssure relief effect of roof deep hole blasting parameters based on micro-seismic data evaluation[J]. Coal Science and Technology, 2020, 48(6): 57-63.
[10] 冯彦军, 康红普.水力压裂起裂与扩展分析[J].岩石力学与工程学报, 2013, 32(S2): 3169-3179. FENG Yanjun, KANG Hongpu. Hydraulic fracturing initiation and propagation[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3169-3179.
[11] 赵善坤, 张广辉, 柴海涛, 等.深孔顶板定向水压致裂防冲机理及多参量效果检验[J].采矿与安全工程学报, 2019, 36(6): 1247-1256. ZHAO Shankun, ZHANG Guanghui, CHAI Haitao, et al. Mechanism of rockburst prevention for directional hydraulic fracturing in deep-hole roof and effect test with multi-parameter[J]. Journal of Mining & Safety Engineering, 2019, 36(6): 1247-1256.
[12] 刘文静, 李刚, 梁少剑, 等.特厚煤层坚硬顶板水力压裂控制技术研究[J].煤炭工程, 2021, 53(11): 67-72. LIU Wenjing, LI Gang, LIANG Shaojian, et al. Control technology of hard roof hydraulic fracturing in extra-thick coal seam[J]. Coal Engineering, 2021, 53(11): 67-72.
[13] 赵善坤, 赵阳, 王寅, 等.采动巷道侧向高低位厚硬顶板破断模式试验研究[J].煤炭科学技术, 2021, 49(4): 111-120. ZHAO Shankun, ZHAO Yang, WANG Yin, et al. Experimental study on fracture mode of lateral high and low thick and hard roof in mining roadway[J]. Coal Science and Technology, 2021, 49(4): 111-120.
[14] 王恩元, 冯俊军, 张奇明, 等.冲击地压应力波作用机理[J].煤炭学报, 2020, 45(1): 100-110. WANG Enyuan, FENG Junjun, ZHANG Qiming, et al. Mechanism of rockburst under stress wave in mining space[J]. Journal of China Coal Society, 2020, 45(1): 100-110.
[15] 韩军, 崔露郁, 贾冬旭, 等.坚硬顶板回采巷道冲击地压的卸载滑脱机制[J].煤炭学报, 2022, 47(2): 711-721. HAN Jun, CUI Luyu, JIA Dongxu, et al. Unloading-slippage mechanism of rock burst occurred in longwall roadway[J]. Journal of China Coal Society, 2022, 47(2): 711-721.
-
期刊类型引用(4)
1. 乔美英,史有强. 基于指标信息融合的冲击地压危险等级预测. 煤矿安全. 2025(02): 118-125 . 本站查看
2. 田勇峰,曹东京,许宏阳,魏明华,田利华,薛建军,薛建秋. 切眼外错下孤岛工作面开采冲击危险性分析及防治措施. 煤矿安全. 2024(03): 139-146 . 本站查看
3. 王飞,马文涛,亢晓涛,焦伟,尚楠,马江鹏,马宏源. 厚硬顶板地面水力致裂防治冲击地压技术研究. 煤炭工程. 2024(08): 59-64 . 百度学术
4. 毕慧杰,莫云龙,李少刚. 复合厚硬顶板深孔爆破与快速装药工艺实践. 煤矿安全. 2024(12): 31-38 . 本站查看
其他类型引用(1)
计量
- 文章访问数: 17
- HTML全文浏览量: 1
- PDF下载量: 11
- 被引次数: 5