不同应力对煤自然氧化的影响规律试验研究
Experimental study on the influence law of different stresses on coal autoxidation
-
摘要: 为研究应力对煤自然氧化的影响规律,设计1套应力对煤自然氧化影响规律试验装置,通过该试验装置对煤样施加不同应力模拟采空区破碎煤体在承压环境中受压变形、温度及气体体积分数变化特征,定量分析不同应力作用下破碎煤体相关参数的变化规律。研究结果表明:升应力作用阶段破碎煤体较恒应力作用阶段受压变形、升温幅度更为明显且煤体升温速率与位移变化速率大小正相关,进一步验证了应力对于煤体自然氧化具有促进作用;破碎煤体在不同应力作用下煤自燃倾向性进一步加剧,煤体内分子更易氧化,从而导致CO、CH4的产生;根据试验所测CO体积分数,从而推断有煤氧复合反应和煤体机械破碎激活脱碳2种产生途径。Abstract: In order to study the influence of stress on the coal autoxidation, a set of test device was designed for the influence law of stress on coal autoxidation. Through this test device, different stresses were applied to coal samples to simulate the characteristics of pressure deformation, temperature and gas concentration of fragmentized coal in goaf in the pressure environment, and the change laws of relevant parameters of fragmentized coal under different stresses were quantitatively analyzed. The research results indicate that the compressive deformation and temperature rise range of fragmentized coal in the stage of rising stress are more obvious than that in the stage of constant stress and the temperature rise rate of coal is positively correlated with the displacement change rate, which further verifies that the stress can promote the coal autoxidation; under different stresses, the spontaneous combustion tendency of fragmentized coal is further intensified, and the molecules in coal are easier to oxidize, which leads to the production of CO and CH4 ; according to the volume fraction of CO measured by the test, it is inferred that there are two ways to produce carbon dioxide, including coal oxygen compound reaction and activated decarburization of coal by mechanical crushing.
-
Keywords:
- fragmentized coal /
- stress /
- CO /
- autoxidation /
- coal spontaneous combustion
-
-
[1] 秦波涛, 仲晓星, 王德明, 等.煤自燃过程特性及防治技术研究进展[J].煤炭科学技术, 2021, 49(1): 66 -99. QIN Botao, ZHONG Xiaoxing, WANG Deming, et al. Research progress of coal spontaneous combustion process characteristics and prevention technology[J]. Coal Science and Technology, 2021, 49(1): 66-99.
[2] 何满潮, 谢和平, 彭苏萍, 等.深部开采岩体力学研究[J].岩石力学与工程学报, 2005, 24(16): 2803-2812. HE Manchao, XIE Heping, PENG Suping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2812.
[3] 彭苏萍.深部煤炭资源赋存规律与开发地质评价研究现状及今后发展趋势[J].煤, 2008(2): 1-11. PENG Suping. Present study and development trend of the deepen coal resource distribution and mining geologic evaluation[J]. Coal, 2008(2): 1-11.
[4] 高宇.陕蒙地区煤层深部开采自燃特性及预防技术研究[D].西安: 西安科技大学, 2019. [5] 王文, 李化敏, 袁瑞甫, 等.动静组合加载含水煤样的力学特征及细观力学分析[J].煤炭学报, 2016, 41(3): 611-617. WANG Wen, LI Huamin, YUAN Ruifu, et al. Micromechanics analysis and mechanical characteristics of water-saturated coal samples under coupled static-dynamic loads[J]. Journal of China Coal Society, 2016, 41(3): 611-617.
[6] 余明高, 马梳珍, 褚廷湘.煤粒径对气体产生规律和自燃倾向性影响研究[J].河南理工大学学报(自然科学版), 2016, 35(1): 1-9. YU Minggao, MA Shuzhen, CHU Tingxiang. Influence study of coal particle size on the gases production rule and spontaneous combustion tendency characteristics[J]. Journal of Henan Polytechnic University(Natural Science), 2016, 35(1): 1-9.
[7] 窦林名, 陆菜平, 牟宗龙, 等.冲击矿压的强度弱化减冲理论及其应用[J].煤炭学报, 2005, 30(6): 690-694. DOU Linming, LU Caiping, MOU Zonglong, et al. Intensity weakening theory for rockburst and its application[J]. Journal of China Coal Society, 2005, 30(6): 690-694.
[8] 张春, 题正义, 李宗翔.受压浮煤自燃过程试验研究[J].中国安全科学学报, 2012, 22(2): 69-74. ZHANG Chun, TI Zhengyi, LI Zongxiang. Experimental research on spontaneous combustion of a layer of compacted residual coal[J]. China Safety Science Journal, 2012, 22(2): 69-74.
[9] 褚廷湘, 韩学锋, 余明高.承压破碎煤体低温氧化特征与宏观致因分析[J].中国安全科学学报, 2019, 29(9): 77-83. CHU Tingxiang, HAN Xuefeng, YU Minggao. Low-temperature oxidation characteristics of compacted broken coal and macroscopic cause analysis[J]. China Safety Science Journal, 2019, 29(9): 77-83.
[10] 李增华.煤炭自燃的自由基反应机理[J].中国矿业大学学报, 1996, 25(3): 111-114. LI Zenghua. Mechanism of free radical reactions in spontaneous combustion of coal[J]. Journal of China University of Mining & Technology, 1996(3): 111-114.
[11] 秦汝祥, 陈国栋, 骆大勇, 等.羊场湾大采高易自燃工作面CO分布规律研究[J].中国安全生产科学技术, 2022, 18(1): 126-131. QIN Ruxiang, CHEN Guodong, LUO Dayong, et al. Study on CO distribution law of spontaneous combustion working face with large minging height in Yang-changwan[J]. Journal of Safety Science and Technology, 2022, 18(1): 126-131.
[12] 朱红青, 刘鹏飞, 刘星魁, 等.沿空巷破碎煤体自燃耗氧及升温特征数值模拟[J].煤炭科学技术, 2011, 39(11): 63-66. ZHU Hongqing, LIU Pengfei, LIU Xingkui, et al. Numerical simulation on oxygen consumption and temperature rising of broken coal spontaneous combustion in gateway retained along goaf[J]. Coal Science and Tech-nology, 2011, 39(11): 63-66.
[13] 张强, 张润鑫, 刘峻铭, 等.煤矿智能化开采煤岩识别技术综述[J].煤炭科学技术, 2022, 50(2): 1-26. ZHANG Qiang, ZHANG Runxin, LIU Junming, et al. Review on coal and rock identification technology for intelligent mining in coal mines[J]. Coal Science and Technology, 2022, 50(2): 1-26.
[14] 翟小伟.煤氧化过程CO产生机理及安全指标研究[D].西安: 西安科技大学, 2012. [15] 贾海林, 余明高, 徐永亮.矿井CO气体成因类型及机理辨识分析[J].煤炭学报, 2013, 38(10): 1812-1818. JIA Hailin, YU Minggao, XU Yongliang. Analysis on the genetic type and mechanism identification of carbon monoxide in the coalmine[J]. Journal of China Coal Society, 2013, 38(10): 1812-1818.
[16] 徐精彩, 张辛亥, 文虎, 等.煤氧复合过程及放热强度测算方法[J].中国矿业大学学报, 2000, 29(3): 31 -35. XU Jingcai, ZHANG Xinhai, WEN Hu, et al. Procedure of reaction between coal and oxygen at low temperature and calculation of its heat emitting intensity[J]. Journal of China University of Mining & Technology, 2000, 29(3): 31-35.
[17] TARABA B. Disintegration of coal as a nonoxidative source of carbon monoxide[J]. Mining Engineer, 1994, 154(395): 55-56. -
期刊类型引用(2)
1. 杨聪,夏鹏,邹妞妞,杨桓,余寅,朱彪. 分子模拟在煤结构领域模拟中的应用进展. 煤矿安全. 2025(01): 1-11 . 本站查看
2. 程超峰. 小保当煤矿采空区“三带”危险区域研究. 内蒙古煤炭经济. 2023(22): 54-56 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 17
- HTML全文浏览量: 0
- PDF下载量: 10
- 被引次数: 2