• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

新集二矿底板水害“煤-岩”空间立体微震监测阵列应用研究

陈建东, 赵立松, 张爱华, 卢钢

陈建东, 赵立松, 张爱华, 卢钢. 新集二矿底板水害“煤-岩”空间立体微震监测阵列应用研究[J]. 煤矿安全, 2023, 54(5): 133-139.
引用本文: 陈建东, 赵立松, 张爱华, 卢钢. 新集二矿底板水害“煤-岩”空间立体微震监测阵列应用研究[J]. 煤矿安全, 2023, 54(5): 133-139.
CHEN Jiandong, ZHAO Lisong, ZHANG Aihua, LU Gang. Application of “coal-rock” spatial three-dimensional micro-seismic monitoring array for floor water hazard in the floor of Xinji No.2 Mine[J]. Safety in Coal Mines, 2023, 54(5): 133-139.
Citation: CHEN Jiandong, ZHAO Lisong, ZHANG Aihua, LU Gang. Application of “coal-rock” spatial three-dimensional micro-seismic monitoring array for floor water hazard in the floor of Xinji No.2 Mine[J]. Safety in Coal Mines, 2023, 54(5): 133-139.

新集二矿底板水害“煤-岩”空间立体微震监测阵列应用研究

Application of “coal-rock” spatial three-dimensional micro-seismic monitoring array for floor water hazard in the floor of Xinji No.2 Mine

  • 摘要: 以新集矿区新集二矿为研究对象,借助矿区底板岩巷这一现场优势条件,通过试验对比分析了煤巷和底板岩巷不同组合方式下监测阵列效果,提出了基于底板岩巷“点面式”、“线线式”和“线面式”的3种空间立体“煤-岩”微震监测阵列,优化了现有微震监测阵列布置方式。研究表明:“煤-岩”空间立体微震监测方法从定位精度、监测范围、服务周期和经济成本方面取得了明显进步。
    Abstract: Taking Xinji No.2 mine in Xinji Mining Area as the research object, with the help of the field advantage of the floor rock roadway in the mining area, the monitoring array effects under different combinations of coal roadway and floor rock roadway were compared and analyzed through field tests. Three spatial three-dimensional “coal-rock” micro-seismic monitoring arrays based on floor rock roadway are proposed, which are “point-surface”, “line-line” and “line-surface” respectively, and the existing micro-seismic monitoring array layout was optimized. The research shows that the “coal-rock” spatial three-dimensional micro-seismic monitoring method has made significant progress in terms of positioning accuracy, monitoring range, service cycle and economic cost.
  • [1] 潘生强.淮南地区阜凤以南推覆体构造特征及演化研究[D].淮南: 安徽理工大学, 2021.
    [2] 刘俊, 赵伟, 韩必武.淮南矿区高精度三维地震勘探技术应用[J].煤田地质与勘探, 2020, 48(6): 8-14.

    IIU Jun, ZHAO Wei, HAN Biwu. Application of high-precision 3D seismic exploration technology in Huainan mining area[J]. Coal Geology & Exploration, 2020, 48(6): 8-14.

    [3] 周学年, 程世贵, 夏小亮, 等.巨厚推覆体下奥灰水害探查治理定向钻进技术[J].煤炭工程, 2021, 53(6): 57-62.

    ZHOU Xuenian, CHENG Shigui, XIA Xiaoliang, et al. Directional drilling technology for exploration and treatment of ordovician limestone water hazard under extra-thick nappe[J]. Coal Engineering, 2021, 53(6): 57-62.

    [4] 张党育, 蒋勤明, 高春芳, 等.华北型煤田底板岩溶水害区域治理关键技术研究进展[J].煤炭科学技术, 2020, 48(6): 31-36.

    ZHANG Dangyu, JIANG Qinming, GAO Chunfang, et al. Study progress on key technologies for regional treatment of karst water damage control in the floor of North China Coalfield[J]. Coal Science and Technology, 2020, 48(6): 31-36.

    [5] 郑士田.两淮煤田煤层底板灰岩水害区域超前探查治理技术[J].煤田地质与勘探, 2018, 46(4): 142-146.

    ZHENG Shitian. Advanced exploration and control technology of limestone water hazard in coal seam floor in Huainan and Huaibei coalfields[J]. Coal Geology & Exploration, 2018, 46(4): 142-146.

    [6] 张晓楠, 郭晓帅.定向构筑阻水塞在陷落柱治理中的应用[J].煤炭与化工, 2022, 45(6): 65-68.

    ZHANG Xiaonan, GUO Xiaoshuai. Application of directional construction water blocking plug in collapse column control[J]. Coal and Chemical Industry, 2022, 45(6): 65-68.

    [7] 黎志豪.淮南煤田岩溶发育特征及其形成机理探讨[D].淮南: 安徽理工大学, 2018.
    [8] 李鹏飞, 马玉龙, 张杰, 等.矿井综合物探技术在隐伏含水构造探测中的应用[J].中国煤炭地质, 2022, 34(10): 60-65.

    LI Pengfei, MA Yulong, ZHANG Jie, et al. Application of integrated geophysical prospecting technology in concealed water-bearing structure detection[J]. Coal Geology of China, 2022, 34(10): 60-65.

    [9] 刘松.顾北矿南一1煤采区工作面底板灰岩水害综合防治技术与策略研究[D].淮南: 安徽理工大学, 2021.
    [10] 李连崇, 姚成宇, 魏廷双, 等.淮南矿区A组煤开采工作面底板破坏带深度确定[J].煤矿安全, 2022, 53(1): 212-218.

    LI Lianchong, YAO Chengyu, WEI Tingshuang, et al. Depth determination of floor crack zone in coal mining face of Group A in Huainan Mining Area[J]. Safety in Coal Mines, 2022, 53(1): 212-218.

    [11] 周金艳, 陈为民, 赵立松.煤层底板导水通道微震信号辨识特征[J].煤炭技术, 2022, 41(12): 128-134.

    ZHOU Jinyan, CHEN Weimin, ZHAO Lisong. Microseismic signal identification characteristics of water channel in coal seam floor[J]. Coal Technology, 2022, 41(12): 128-134.

    [12] 刘超, 吴顺川, 程爱平, 等.采动条件下底板潜在导水通道形成的微震监测与数值模拟[J].北京科技大学学报, 2014, 36(9): 1129-1135.

    LIU Chao, WU Shunchuan, CHENG Aiping, et al. Microseismic monitoring and numerical simulation of the formation of water inrush pathway caused by coal mining[J]. Journal of University of Science and Technology Beijing, 2014, 36(9): 1129-1135.

    [13] 张爱华, 陈建东.微震监测地质异常对工作面回采影响分析[J].煤炭与化工, 2021, 44(12): 40-43.

    ZHANG Aihua, CHEN Jiandong. Influence analysis of microseismic monitoring geological anomaly on working face mining[J]. Coal and Chemical Industry, 2021, 44(12): 40-43.

    [14] 邱仟.微震智能定位方法研究[D].成都: 电子科技大学, 2022.
    [15] 贾靖, 傅先杰, 李玉宝, 等.基于底板巷的微震监测阵列布置方法: CN114089417A[P].2022-02-25.
    [16] 董鹏程.采空区煤柱下方巷道围岩变形失稳规律及巷道支护技术[D].阜新: 辽宁工程技术大学, 2022.
    [17] 赵奎, 饶运章, 蔡美峰.采空区应力变化监测及稳定性分析[J].矿业研究与开发, 2002, 22(4): 21-23.

    ZHAO Kui, RAO Yunzhang, CAI Meifeng. Stress monitoring and stability analysis in mined areas[J]. Mining Research and Development, 2002, 22(4): 21-23.

  • 期刊类型引用(1)

    1. 赵群. 大埋深高水压煤矿突水危险性分析及水害监测预警指标构建. 煤炭与化工. 2024(07): 61-65+70 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  30
  • HTML全文浏览量:  3
  • PDF下载量:  18
  • 被引次数: 1
出版历程
  • 发布日期:  2023-05-19

目录

    /

    返回文章
    返回