• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

榆横北区巴拉素井田富水煤层特征

方刚

方刚. 榆横北区巴拉素井田富水煤层特征[J]. 煤矿安全, 2023, 54(5): 92-99.
引用本文: 方刚. 榆横北区巴拉素井田富水煤层特征[J]. 煤矿安全, 2023, 54(5): 92-99.
FANG Gang. Characteristics of water-rich coal seam in Balasu Mine Field of northern Yuheng Mining Area[J]. Safety in Coal Mines, 2023, 54(5): 92-99.
Citation: FANG Gang. Characteristics of water-rich coal seam in Balasu Mine Field of northern Yuheng Mining Area[J]. Safety in Coal Mines, 2023, 54(5): 92-99.

榆横北区巴拉素井田富水煤层特征

Characteristics of water-rich coal seam in Balasu Mine Field of northern Yuheng Mining Area

  • 摘要: 以陕北侏罗纪煤田榆横北区内巴拉素煤矿2号富水煤层为主要研究对象,对煤层的基本特征和裂隙特征进行研究;结合现场实测、室内实验、理论计算等方法手段,对煤层无机矿物组成、物理力学性质、煤体结构判别、煤体裂隙主要参数进行分析,研究2号富水煤层的主要特征。结果表明:相比其他非富水煤层,巴拉素井田2号富水煤层内的碳酸盐矿物和黏土矿物含量较低,煤体裂隙不易被充填堵塞;其煤层内的黄铁矿呈脉状、长条状分布,该赋存状态为流体沉淀的产物,反映了2号煤层内流体活跃的径流情况;2号富水煤层的抗压强度和弹性模量相对最小,在原始地应力的作用下更易产生塑性破坏,形成裂隙裂缝;该煤层煤体结构在部分区域呈碎裂结构煤;2号富水煤层一定程度上受区内小型构造影响,煤层裂隙的主要参数值远大于其它煤层,煤层裂隙平均密度为11.48条/m,煤体体积裂隙数为4.01条/m3,煤体完整性系数为0.72,煤层剖面裂隙率平均约3.12%;巴拉素井田2号煤层具备存储和运移地下水的优势介质条件。
    Abstract: This paper takes No.2 water-rich coal seam of Balasu Coal Mine in northern Yuheng Mining Area of Jurassic Coal Field in northern Shaanxi as the main research object, and studies the basic characteristics and fracture characteristics of the coal seam. Combined with field measurement, laboratory experiment, theoretical calculation and other methods, the inorganic mineral composition, physical and mechanical properties of coal seam, coal structure discrimination, coal crack main parameters and other analyses were carried out, and the major characteristics of No.2 water-rich coal seam were found. The results show that, compared with other non-water-rich coal seams, the contents of carbonate minerals and clay minerals in No.2 water-rich coal seam in Balasu Mine Field are lower, and the coal cracks are not easy to be filled and blocked. The pyrite in the coal seam is distributed in veins and strips. The occurrence state is the product of fluid precipitation, which reflects the active fluid runoff in No.2 coal seam. In addition, the No.2 water-rich coal seam has relatively small compressive strength and elastic modulus, and is more likely to produce plastic failure under the action of original in-situ stress, resulting in the formation of cracks. And the coal body structure of the coal seam is fractured coal in some areas. At the same time, the No.2 water-rich coal seam is affected by small structure in the area to a certain extent, and the main parameter value of coal seam fracture is much higher than that of other coal seams. That is, the average density of coal seam cracks is 11.48 per m, the number of coal volume cracks is 4.01 per m3, and the coal integrity coefficient is 0.72, the average fracture rate of coal seam section is about 3.12%. It is concluded that the No.2 coal seam in Balasu Mine Field has the advantageous medium conditions for storing and migrating groundwater.
  • [1] 李顺才, 李强, 缪协兴, 等.小纪汗井田地层介质渗透特性及煤层为主含水层成因机制[J].煤炭学报, 2017, 42(2): 353-359.

    LI Shuncai, LI Qiang, MIAO Xiexing, et al. Experimental study on permeability properties of stratum medium of Xiaojihan coal mine and genetic mechanism of the coal seam becoming a main aquifer[J]. Journal of China Coal Society, 2017, 42(2): 353-359.

    [2] 方刚, 梁向阳, 黄浩, 等.巴拉素井田煤层富水机理与注浆堵水技术[J].煤炭学报, 2019, 44(8): 2470-2483.

    FANG Gang, LIANG Xiangyang, HUANG Hao, et al. Water-rich mechanism of coal seam and grouting and blocking water technology in Balasu mine field[J]. Journal of China Coal Society, 2019, 44(8): 2470-2483.

    [3] 程庆迎, 黄炳香, 李增华.煤的孔隙和裂隙研究现状[J].煤炭工程, 2011, 53(12): 91-93.

    CHENG Qingying, HUANG Bingxiang, LI Zenghua. Research status of pore and crack in coal[J]. Coal Engineering, 2011, 53(12): 91-93.

    [4] 黄文辉, 敖卫华, 翁成敏, 等.鄂尔多斯盆地侏罗纪煤的煤岩特征及成因分析[J].现代地质, 2010, 24(6): 1186-1197.

    HUANG Wenhui, AO Weihua, WENG Chengmin, et al. Characteristics of coal petrology and genesis of Jurassic coal in Ordos basin[J]. Geoscience, 2010, 24(6): 1186-1197.

    [5] 邱殿明.断裂、断层、节理、劈理、裂隙、裂缝之间的关系小结[J].吉林大学学报(地球科学版), 2013, 43(5): 1392.
    [6] 刘世奇, 王鹤, 王冉, 等.煤层孔隙与裂隙特征研究进展[J].沉积学报, 2021, 39(1): 212-230.

    LIU Shiqi, WANG He, WANG Ran, et al. Research advances on characteristics of pores and fractures in coal seams[J]. Acta Sedimentologica Sinica, 2021, 39(1): 212-230.

    [7] 高婷, 王卫星, 王峰萍, 等.基于紫外图像的隧道岩体样本节理裂隙二维面积及三维体积估计[J].长安大学学报(自然科学版), 2018, 38(9): 213-220.

    GAO Ting, WANG Weixing, WANG Fengping, et al. 2D area and 3D volume estimation for rock fractures of joint fracture of rock mass in tunnel by using ultraviolet images[J]. Journal of Chang’an University(Natural Science Edition), 2018, 38(9): 213-220.

    [8] 李回贵, 高保彬, 李化敏.单轴压缩下煤岩宏观破裂结构及声发射特性研究[J].地下空间与工程学报, 2015, 11(3): 612-618.

    LI Huigui, GAO Baobin, LI Huamin. Study on macroscopic structure and acoustic emission character of coal rock under uniaxial compression[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(3): 612-618.

    [9] 屈晶, 申建, 韩磊, 等.基于CT图像的高阶煤不同宏观煤岩组分裂隙差异发育规律[J].天然气工业, 2022, 42(6): 76-86.

    QU Jing, SHEN Jian, HAN Lei, et al. Characteristics of fractures indifferent macro-coal components in high-rank coal based on CT images[J]. Natural Gas Industry, 2022, 42(6): 76-86.

    [10] 周震, 王卫星, 王珊珊.基于分数阶微分及灰度和形状的节理裂隙提取[J].金属矿山, 2020, 51(12): 178-183.

    ZHOU Zhen, WANG Weixing, WANG Shanshan. Extraction of rock joint and fissure based on fractional differential, gray scale and gradient and shape information[J]. Metal Mine, 2020, 51(12): 178-183.

    [11] 王晓兵, 王俊卿.基于孔内电视技术的岩体节理裂隙特征研究[J].岩土工程技术, 2021, 35(5): 286-293.

    WANG Xiaobing, WANG Junqing. Characteristics of rock joints and fissures based on borehole television technology[J]. Geotechnical Engineering Technique, 2021, 35(5): 286-293.

    [12] 秦臻, 黄波林, 张鹏.基于探地雷达检测的岩溶岸坡内部宏观裂隙响应规律研究[J].工程地质学报, 2021, 29(3): 628-639.

    QIN Zhen, HUANG Bolin, ZHANG Peng. GPR detection based response law of macro-cracks in karst slope[J]. Journal of Engineering Geology, 2021, 29(3): 628-639.

    [13] 崔洪庆, 关金锋, 王荣魁, 等.煤层裂隙优势发育方位和频率轨迹预测[J].安全与环境学报, 2016, 16(4): 125-129.

    CUI Hongqing, GUAN Jinfeng, WANG Rongkui, et al. Prediction of the advantageous development direction and linear frequency trajectory calculation of the coal-bed fractures[J]. Journal of Safety and Environment, 2016, 16(4): 125-129.

    [14] 徐永亮, 王兰云, 褚廷湘, 等.煤田火区扩散机理与煤岩裂隙发育规律研究进展[J].河南理工大学学报(自然科学版), 2013, 32(6): 668-672.

    XU Yongliang, WANG Lanyun, CHU Tingxiang, et al. Research progress on coalfire diffusion and fracture development of coal rocks in coal-fire areas[J]. Journal of Henan Polytechnic University(Natural Science), 2013, 32(6): 668-672.

    [15] 宋晓夏, 唐跃刚, 李伟, 等.中梁山南矿不同尺度煤体变形特征[J].煤田地质与勘探, 2013, 41(5): 24-28.

    SONG Xiaoxia, TANG Yuegang, LI Wei, et al. Deformation characteristics of different scale of coal in Zhongliangshan southern mine[J]. Coal Geology & Exploration, 2013, 41(5): 24-28.

    [16] 李波波, 王斌, 杨康, 等.煤岩孔裂隙结构分形特征及渗透率模型研究[J]. 煤炭科学技术, 2021, 49(2): 226-231.

    LI Bobo, WANG Bin, YANG Kang, et al. Study on fractal characteristics of coal pore fissure structure and permeability model[J]. Coal Science and Technology, 2021, 49(2): 226-231.

    [17] 方刚, 刘柏根, 靳德武, 等.穿越富水煤层段井巷防治水技术研究[J].煤炭科学技术, 2022, 50(7): 252-260.

    FANG Gang, LIU Baigen, JIN Dewu, et al. Research on water prevention and control technology for mine roadway engineering crossing water-rich coal seam[J]. Coal Science and Technology, 2022, 50(7): 252-260.

    [18] 王春林, 刘洋, 方刚, 等.榆横北区富水煤层巷道掘进防治水技术[J].煤矿安全, 2021, 52(9): 102-107.

    WANG Chunlin, LIU Yang, FANG Gang, et al. Discussion on water prevention and control technology of roadway tunneling in water-rich coal seam in northern Yuheng Mining Area[J]. Safety in Coal Mines, 2021, 52(9): 102-107.

    [19] 中煤科工集团西安研究院有限公司.巴拉素井田水文地质补充勘探报告[R].西安: 中煤科工集团西安研究院有限公司, 2017.
    [20] 王成勇, 陈鹏, 谭金龙, 等.基于密度泛函理论的水对黄铁矿和煤表面润湿性机理研究[J].矿产综合利用, 2022, 233(1): 157-163.

    WANG Chengyong, CHEN Peng, TAN Jinlong, et al. Study on water wettability mechanism of pyrite and coal surfaces based on density functional theory[J]. Multipurpose Utilization of Mineral Resources, 2022, 233(1): 157-163.

    [21] 王海军, 马良.陕北侏罗纪煤田三角洲平原沉积环境及其岩石力学特征[J].煤田地质与勘探, 2019, 47(3): 61-69.

    WANG Haijun, MA Liang. Study on sediment environment and rock mechanics characteristics of the delta plain of Jurassic coalfield in northern Shaanxi[J]. Coal Geology & Exploration, 2019, 47(3): 61-69.

    [22] 李海龙, 白海波, 钱宏伟, 等.含水煤层底板岩层力学性质分析: 以小纪汗煤矿为例[J].采矿与安全工程学报, 2016, 33(3): 501-508.

    LI Hailong, BAI Haibo, QIAN Hongwei, et al. Study progress of shallow seam mining with water resource preservation[J]. Journal of Mining & Safety Engineering, 2016, 33(3): 501-508.

    [23] GB/T 30050—2013 煤体结构分类[S].
    [24] 陈军.基于Excel绘制节理走向玫瑰花图[J].江淮水利科技, 2014, 54(6): 10-11.
    [25] 鄢光辉.裂隙密度玫瑰花图及编制方法[J].四川水力发电, 1991, 10(2): 34-39.
    [26] GB/T 50218—2014 工程岩体分级标准[S].
    [27] JTG 3370.1—2018 公路隧道设计规范[S].
    [28] 林锋, 黄润秋, 王胜, 等.岩体体积节理数(Jv)的现场测量方法评价[J].工程地质学报, 2008, 67(5): 663-666.

    LIN Feng, HUANG Runqiu, WANG Sheng, et al. Evaluation of in-situ measurement methods for counting volumetric joints of rock mass[J]. Journal of Engineering Geology, 2008, 67(5): 663-666.

    [29] 胡修文, 胡盛明, 卢阳, 等.岩体体积节理数的统计方法及其在围岩分级中的应用[J].长江科学院学报, 2010, 27(6): 30-34.

    HU Xiuwen, HU Shengming, LU Yang, et al. Measurement of volumetric joint count and its application in surrounding rock classification[J]. Journal of Yangtze River Scientific Research Institute, 2010, 27(6): 30-34.

计量
  • 文章访问数:  70
  • HTML全文浏览量:  0
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 发布日期:  2023-05-19

目录

    /

    返回文章
    返回