• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

顶板型老空突水模式及导水通道演化机理研究

连野, 戚庭野, 刘钦

连野, 戚庭野, 刘钦. 顶板型老空突水模式及导水通道演化机理研究[J]. 煤矿安全, 2023, 54(5): 42-48.
引用本文: 连野, 戚庭野, 刘钦. 顶板型老空突水模式及导水通道演化机理研究[J]. 煤矿安全, 2023, 54(5): 42-48.
Study on water inrush mode and evolution mechanism of water channel in roof type goaf[J]. Safety in Coal Mines, 2023, 54(5): 42-48.
Citation: Study on water inrush mode and evolution mechanism of water channel in roof type goaf[J]. Safety in Coal Mines, 2023, 54(5): 42-48.

顶板型老空突水模式及导水通道演化机理研究

Study on water inrush mode and evolution mechanism of water channel in roof type goaf

  • 摘要: 煤矿顶板型老空水害具有很强的冲击力和破坏力,研究老空区水体下覆岩突水通道的演化规律对老空水害防治具有重要意义。以山西某矿8446工作面老空突水事故为例,采用相似模拟与数值模拟方法,探究煤层顶板覆岩结构破坏与水力学之间的耦合规律,揭示了突水通道形态演化机理。研究结果表明:顶板老空突水过程经历了初始渗流阶段、裂隙渗流阶段、管道流突水阶段;初始渗流较应力峰值显现时滞后约3 m,水流沿采动裂隙向下运移平均渗流速度为4.056 m/d,滞后性和渗流速度可作为突水事故关键预警信息;通过流固耦合数值模型的模拟,突水通道位于矩形梯台压实区的四周,与现场实际突水位置基本一致。
    Abstract: The roof type goaf water disaster in coal mine has strong impact and destructive force. It is of great significance to study the evolution law of water inrush channel of overlying strata under goaf water for the prevention and control of goaf water disaster. Taking the goaf water inrush accident of 8446 working face in a mine in Shanxi Province as an example, this paper uses similar simulation and numerical simulation methods to explore the coupling law between the structural failure of coal seam roof overburden and hydraulics, and reveals the morphological evolution mechanism of water inrush channel. The results show that the goaf water inrush process of roof has experienced the initial seepage stage, the fracture seepage stage and the pipeline flow water inrush stage. The initial seepage lags about 3 m behind the peak stress, and the average seepage velocity is 4.056 m/d. The hysteresis and seepage velocity can be used as the key early warning information of water inrush accident. Through the simulation of the fluid-solid coupling numerical model, the water inrush channel is located around the rectangular terrace compaction area, which is basically consistent with the actual water inrush position on site.
  • [1] 谢和平, 吴立新, 郑德志.2025年中国能源消费及煤炭需求预测[J].煤炭学报, 2019, 44(7): 1949-1960.

    XIE Heping, WU Lixin, ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society, 2019, 44(7): 1949-1960.

    [2] 顾大钊, 张勇, 曹志国.我国煤炭开采水资源保护利用技术研究进展[J].煤炭科学技术, 2016, 44(1): 1-7.

    GU Dazhao, ZHANG Yong, CAO Zhiguo. Technical progress of water resource protection and utilization by coal mining in China[J]. Coal Science and Technology, 2016, 44(1): 1-7.

    [3] 顾大钊.能源“金三角”煤炭现代开采水资源及地表生态保护技术[J].中国工程科学, 2013, 15(4): 102-107.

    GU Dazhao. Water resource and surface ecology protection technology of modern coal mining in China’s energy “Golden Triangle”[J]. Engineering Sciences, 2013, 15(4): 102-107.

    [4] 甘林堂.淮南矿区A组煤底板灰岩水防治及潘二矿突水事故原因分析[J].煤矿安全, 2018, 49(7): 171-174.

    GAN Lintang. Prevention of limestone water in coal floor of group A of Huainan mining area and causes analysis of water inrush accidents in Pan’er Mine[J]. Safety in Coal Mines, 2018, 49(7): 171-174.

    [5] 邢一飞, 张诚, 王建辉.2007-2014年我国煤矿突水事故分析及规律研究[J].煤炭技术, 2016, 35(7): 186-188.

    XING Yifei, ZHANG Cheng, WANG Jianhui. Analysis and regularity of China’s coal mine water inrush accidentin 2007—2014[J]. Coal Technology, 2016, 35(7): 186-188.

    [6] 贺静兵.柳林县整合煤矿区防治水分析及治理措施[J].山西煤炭, 2021, 41(3): 25-29.

    HE Jingbing. Water control analysis and measures of integrated mining areas in Liulin county[J]. Shanxi Coal, 2021, 41(3): 25-29.

    [7] 刘天泉.矿山岩体采动影响与控制工程学及其应用[J].煤炭学报, 1995(1): 1-5.

    LIU Tianquan. Influence of mining activities on mine rock mass and control engineering[J]. Journal of China Coal Society, 1995(1): 1-5.

    [8] 贾后省, 马念杰, 赵希栋.浅埋薄基岩采煤工作面上覆岩层纵向贯通裂隙“张开—闭合”规律[J].煤炭学报, 2015, 40(12): 2787-2793.

    JIA Housheng, MA Nianjie, ZHAO Xidong. “Openclose” law of longitudinal transfixion cracks in shallow buried coal face with thin bedrock[J]. Journal of China Coal Society, 2015, 40(12): 2787-2793.

    [9] 张广超, 陶广哲, 孟祥军, 等.巨厚松散层下软弱覆岩破坏规律[J].煤炭学报, 2022, 47(11): 3984-4010.

    ZHANG Guangchao, TAO Guangzhe, MENG Xiangjun, et al. Failure law of weak overburden stratum underlying etra-thick alluvium[J]. Journal of China Coal Society, 2022, 47(11): 3998-4010.

    [10] 隋旺华, 董青红.近松散层开采孔隙水压力变化及其对水砂突涌的前兆意义[J].岩石力学与工程学报, 2008, 27(9): 1908-1916.

    SUI Wanghua, DONG Qinghong. Variation of pore water pressure and its precursor significance for quicksand disasters due to mining near unconsolidated formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1908-1916.

    [11] 孟祥军, 林海飞, 王超, 等.巨厚煤层综放工作面覆岩“三带”演化特征[J].煤矿安全, 2021, 52(6): 85-90.

    MENG Xiangjun, LIN Haifei, WANG Chao, et al. Evolution characteristics of overburden three zones in fully mechanized caving face in huge thick coal seam[J]. Safety in Coal Mines, 2021, 52(6): 85-90.

    [12] 王进尚, 姚多喜, 黄浩.煤矿隐伏断层递进导升突水的临界判据及物理模拟研究[J].煤炭学报, 2018, 43(7): 2014-2020.

    WANG Jinshang, YAO Duoxi, HUANG Hao. Critical criterion and physical simulation research on progressive ascending water inrush in hidden faults of coal mines[J]. Journal of China Coal Society, 2018, 43(7): 2014-2020.

    [13] 李文平, 刘启蒙, 孙如华.构造破碎带滞后突水渗流转换理论与试验研究[J].煤炭科学技术, 2011, 39(11): 10-13.

    LI Wenping, LIU Qimeng, SUN Ruhua. Theoretical and experiment study on vadose conversion of water inrush later occurred from structure broken zone[J]. Coal Science and Technology, 2011, 39(11): 10-13.

    [14] 姚邦华, 周海峰, 陈龙.重复采动下覆岩裂隙发育规律模拟研究[J].采矿与安全工程学报, 2010(3): 443-446.

    YAO Banghua, ZHOU Haifeng, CHEN Long. Simulation study on fracture development law of overburden under repeated mining[J]. Journal of Mining & Safety Engineering, 2010, 27(3): 443-446.

    [15] 胡涛, 赵德深.采动效应下逆断层顶板突水规律相似模拟[J].煤矿安全, 2017, 48(2): 52-55.

    HU Tao, ZHAO Deshen. Similarity simulation of water-inrush from reverse fault roof under mining effect[J]. Safety in Coal Mines, 2017, 48(2): 52-55.

    [16] 姚多喜, 鲁海峰.煤层底板岩体采动渗流场-应变场耦合分析[J].岩石力学与工程学报, 2012, 31(1): 2738-2744.

    YAO Duoxi, LU Haifeng. Seepage field-strain field coupling analysis for rock masses of coal seam floor during mining above a confined aquifer[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 2738-2744.

  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  39
  • HTML全文浏览量:  5
  • PDF下载量:  48
  • 被引次数: 1
出版历程
  • 发布日期:  2023-05-19

目录

    /

    返回文章
    返回