• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

复合表面活性剂对疏水煤体协同润湿效应研究

林明磊, 刘建国, 金龙哲, 王天暘, 欧盛南, 张洪玥, 丁尧, 陈长岭

林明磊, 刘建国, 金龙哲, 王天暘, 欧盛南, 张洪玥, 丁尧, 陈长岭. 复合表面活性剂对疏水煤体协同润湿效应研究[J]. 煤矿安全, 2023, 54(4): 1-10.
引用本文: 林明磊, 刘建国, 金龙哲, 王天暘, 欧盛南, 张洪玥, 丁尧, 陈长岭. 复合表面活性剂对疏水煤体协同润湿效应研究[J]. 煤矿安全, 2023, 54(4): 1-10.
LIN Minglei, LIU Jianguo, JIN Longzhe, WANG Tianyang, OU Shengnan, ZHANG Hongyue, DING Yao, CHEN Changling. Synergistic wetting effect of composite surfactant on hydrophobic coal[J]. Safety in Coal Mines, 2023, 54(4): 1-10.
Citation: LIN Minglei, LIU Jianguo, JIN Longzhe, WANG Tianyang, OU Shengnan, ZHANG Hongyue, DING Yao, CHEN Changling. Synergistic wetting effect of composite surfactant on hydrophobic coal[J]. Safety in Coal Mines, 2023, 54(4): 1-10.

复合表面活性剂对疏水煤体协同润湿效应研究

Synergistic wetting effect of composite surfactant on hydrophobic coal

  • 摘要: 为提高煤层注水减尘效率,选取了2种非离子与2种阴离子表面活性剂,研究了不同质量分数下单体与复合表面活性剂溶液表面张力及其对疏水煤尘润湿特性的变化规律(接触角与自然沉降速率),对比分析了复合表面活性剂溶液对疏水煤体的协同润湿效应,探讨了协同润湿机理,并对其开展了煤层注水现场验证试验。实验结果表明:4种表面活性剂在超过临界胶束浓度后对煤尘的润湿性仍不断增强,非离子表面活性剂TX-100与阴离子表面活性剂DSS之间具有显著协同润湿效应,且该效应随溶液浓度增加呈增强趋势,复合表面活性剂在1%质量浓度时较TX-100、DSS单体表面活性剂协同润湿率分别达60.06%、132.03%,即高浓度复合表面活性剂溶液对疏水煤体具有显著协同润湿效应。利用界面化学理论对该协同润湿机理分析得到:在高浓度复合表面活性剂溶液中,表面活性剂胶束解离速率的大幅提升是其对疏水煤尘具有协同润湿效应的关键原因。为验证该协同润湿效应,在杨柳煤矿1076综掘工作面进行煤层注水现场试验,试验结果发现:利用添加1%质量分数的TX-100:DSS复合表面活性剂溶液进行注水后,综掘巷减尘率达71.04%,较仅添加0.05%TX-100溶液提高了43.45%,验证了高浓度复合表面活性剂对疏水煤体具有显著协同润湿效应。
    Abstract: To improve the dust reduction efficiency of coal seam water injection, two kinds of non-ionic and two kinds of anionic surfactants were selected to study the surface tension and wetting characteristics of monomer and composite surfactant solutions. The synergistic wetting effect of composite surfactant solution on hydrophobic coal is compared and analyzed, the mechanism of synergistic wetting is discussed, and the field test of coal seam water injection is carried out. The wettability experiment of monomer surfactant shows that the wettability of the four surfactants is still gradually enhanced after exceeding the critical micelle(CMC) concentration. The experimental results of synergistic wettability of composite surfactant show that there is a significant synergistic effect between non-ionic surfactant TX-100 and anionic surfactant DSS, and that the synergistic effect gradually increases with the increase of surfactant mass concentration. When the total mass concentration was 1%, the synergistic rate was 60.06% and 132.03%, respectively, compared with TX-100 and DSS monomer solution. The mechanism of synergistic wetting was analyzed based on the principle of interfacial chemistry. It was found that the key reason for the synergistic wetting effect of hydrophobic coal dust was the significant increase of the dissociation rate of surfactant micelles in high concentration composite surfactant solution. The coal seam water injection test was carried out on the fully mechanized excavation face. After adding 1% TX-100: DSS composite surfactant solution for water injection, the dust reduction rate reached 71.04%, which was 43.45% higher than that of adding 0.05% TX-100 solution, indicating that the high concentration composite surfactant has a significant synergistic wetting effect on hydrophobic coal.
  • [1] 袁亮.煤矿粉尘防控与职业安全健康科学构想[J].煤炭学报,2020,45(1):1-7.
    [2] 杜翠凤,王辉,蒋仲安,等.长压短抽式通风综掘工作面粉尘分布规律的数值模拟[J].北京科技大学学报,2010,32(8):957-962.

    DU Cuifeng, WANG Hui, JIANG Zhongan, et al. Numerical simulations of dust distribution in a fully mechanized excavation face with far-pressing-near-absorption ventilation[J]. Journal of University of Science and Technology Beijing, 2010, 32(8): 957-962.

    [3] 张艳娇,徐向宇,姜婉,等.综掘面尘源位置对负压抽风口位置的影响[J].中国安全科学学报,2021,31(4):147-155.

    ZHANG Yanjiao, XU Xiangyu, JIANG Wan, et al. Influence of dust source location in fully-mechanized excavation face on location of negative pressure suction opening[J]. China Safety Science Journal, 2021, 31(4): 147-155.

    [4] 顾大钊,李全生.基于井下生态保护的煤矿职业健康防护理论与技术体系[J].煤炭学报,2021,46(3):950-958.

    GU Dazhao, LI Quansheng. Theoretical framework and key technologies of underground ecological protection based on coal mine occupational health prevention[J]. Journal of China Coal Society, 2021, 46(3): 950-958.

    [5] 程卫民,周刚,陈连军,等.我国煤矿粉尘防治理论与技术20年研究进展及展望[J].煤炭科学技术,2020, 48(2):1-20.

    CHENG Weimin, ZHOU Gang, CHEN Lianjun, et al. Research progress and prospect of dust control theory and technology in China’s coal mines in the past 20 years[J]. Coal Science and Technology, 2020, 48(2): 1-20.

    [6] 李德文,隋金君,刘国庆,等.中国煤矿粉尘危害防治技术现状及发展方向[J].矿业安全与环保,2019,46(6):1-7.

    LI Dewen, SUI Jinjun, LIU Guoqing, et al. Technical status and development direction of coal mine dust hazard prevention and control technology in China[J]. Mining Safety & Environmental Protection, 2019, 46(6): 1-7.

    [7] 王青松,金龙哲,孙金华.煤层注水过程分析和煤体润湿机理研究[J].安全与环境学报,2004(1):70-73.

    WANG Qingsong, JIN Longzhe, SUN Jinhua. A research on coal seam water infusion course and coal body wetness mechanism[J]. Journal of Safety and Environment, 2004(1): 70-73.

    [8] 汪李龙,康健婷,康天合,等.SDS溶液改变无烟煤润湿性与冲击产尘粒径分布的实验研究[J].煤矿安全,2020,51(1):30-37.

    WANG Lilong, KANG Jianting, KANG Tianhe, et al. Experimental study on influence of SDS solution onwettability and grain size distribution of impact crushing dust production in anthracite[J]. Safety in Coal Mines, 2020, 51(1): 30-37.

    [9] WANG G, WANG E, HUANG Q, et al. Effects of cationic and anionic surfactants on long flame coal seam water injection[J]. Fuel, 2022, 309: 122233.
    [10] 郭敬中,金龙哲,杨朝霞,等.应用渗透棒提高煤层注水效果分析及试验研究[J].中国安全科学学报,2020,30(5):54-59.

    GUO Jingzhong, JIN Longzhe, YANG Zhaoxia, et al. Analysis and experimental study on improving water injection effect of coal seam with permeable rod[J]. China Safety Science Journal, 2020, 30(5): 54-59.

    [11] 王道涵,邹佳霖.表面活性剂复配对煤尘润湿性能的影响研究[J].矿业安全与环保,2019,46(2):25-28.

    WANG Daohan, ZOU Jialin. Study on the effect of compound surfactant on coal dust wettability[J]. Mining Safety & Environmental Protection, 2019, 46(2): 25-28.

    [12] SHI G, QI J, WANG Y, et al. Synergistic influence of noncationic surfactants on the wettability and functional groups of coal[J]. Powder Technology, 2021, 385: 92-105.
    [13] 翁安琦,袁树杰,王晓楠,等.煤层注水降尘中表面活性剂复配应用研究[J].中国安全科学学报,2020,30(10):90-95.

    WENG Anqi, YUAN Shujie, WANG Xiaonan, et al. Study on application of surfactant compound in coal seam water injection for dust reduction[J]. China Safety Science Journal, 2020, 30(10): 90-95.

    [14] LIU J, WANG S, JIN L, et al. Water-retaining properties of NCZ composite dust suppressant and its wetting ability to hydrophobic coal dust[J]. International Journal of Coal Science & Technology, 2021, 8(2): 240-247.
    [15] 林海飞,刘宝莉,严敏,等.非阳离子表面活性剂对煤润湿性能影响的研究[J].中国安全科学学报,2018, 28(5):123-128.

    LIN Haifei, LIU Baoli, YAN Min, et al. Research influence of non-cationic surfactant on wettability of coal[J]. China Safety Science Journal, 2018, 28(5): 123-128.

    [16] CHEN Y, XU G, HUANG J, et al. Characterization of coal particles wettability in surfactant solution by using four laboratory static tests[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567: 304-312.
    [17] 刘邱祖,韩振南,王志坚,等.呼吸性粉尘润湿机理及润湿剂复配实验研究[J].中国粉体技术,2014,20(2):1-5.

    LIU Qiuzu, HAN Zhennan, WANG Zhijian, et al. Wetting mechanism of respirable dusts and experimental study on mixture of wetting agents[J]. China Powder Science and Technology, 2014, 20(2): 1-5.

    [18] KOVALCHUK N M, TRYBALA A, STAROV V, et al. Fluoro-vs hydrocarbon surfactants: why do they differ in wetting performance[J]. Advances in Colloid and Interface Science, 2014, 210: 65-71.
    [19] WANG X, YUAN S, LI X, et al. Synergistic effect of surfactant compounding on improving dust suppression in a coal mine in Erdos, China[J]. Powder Technology, 2019, 344: 561-569.
    [20] 赵璐,张蕾,文欣,等.表面活性剂润湿低阶煤煤尘的性能及作用机理[J].西安科技大学学报,2021,41(2):323-330.

    ZHAO Lu, ZHANG Lei, WEN Xin, et al. Wetting ability of surfactants on low-rank coal and wetting mechanism[J]. Journal of Xi’an University of Science and Technology, 2021, 41(2): 323-330.

    [21] 郑子睿,李子璐,赵克非,等.生物基表面活性剂七叶皂素的界面行为[J].高等学校化学学报,2021,42(10):3107-3115.

    ZHENG Zirui, LI Zilu, ZHAO Kefei, et al. Interfacial behaviors of bio-based surfactant escin[J]. Chemical Journal of Chinese Universities, 2021, 42(10): 3107-3115.

    [22] 张坤尹,严敏,李树刚,等.煤体表面粗糙度对非阳离子表面活性剂润湿性影响的实验研究[J].煤矿安全,2021,52(11):8-15.

    ZHANG Kunyin, YAN Min, LI Shugang, et al. Experimental study on the influence of coal surface roughnesson wettability of non-cationic surfactants[J]. Safety in Coal Mines, 2021, 52(11): 8-15.

    [23] WANG C, ZHOU G, JIANG W, et al. Preparation and performance analysis of bisamido-based cationic surfactant fracturing fluid for coal seam water injection[J]. Journal of Molecular Liquids, 2021, 332: 115806.
    [24] 桂哲,刘荣华,王鹏飞,等.表面活性剂对煤尘润湿性能的影响[J].黑龙江科技大学学报,2016,26(5):513-517.

    GUI Zhe, LIU Ronghua, WANG Pengfei, et al. Experimental study on surfactant effect on coal dust wettability[J]. Journal of Heilongjiang University of Science and Technology, 2016, 26(5): 513-517.

    [25] JIANG S, QI W, MA C, et al. The high-concentration stable phase: The breakthrough of catanionic surfactant aqueous system[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129120.
    [26] 安英杰,李田田,王若琳,等.十二烯基琥珀酸环糊精酯的制备及其乳化性能[J].精细化工,2021,38(1):97-102.

    AN Yingjie, LI Tiantian, WANG Ruolin, et al. Preparation of dodecenyl succinate cyclodextrin ester and its emulsifying properties[J]. Fine Chemicals, 2021, 38(1): 97-102.

    [27] ZHANG X J, ZHOU Z H, HAN L, et al. Mechanism responsible for the reduction of interfacial tension by extended surfactants[J]. Colloids and Surfaces A: Phy-sicochemical and Engineering Aspects, 2022, 634: 128013.
    [28] 张旋,张天赐,葛际江,等.表面活性剂对气-液界面纳米颗粒吸附规律的影响[J].物理学报,2020,69(2):217-224.

    ZHANG Xuan, ZHANG Tianci, GE Jijiang, et al. Effect of surfactants on adsorption behavior of nanoparicles at gas-liquid surface[J]. Acta Physica Sinica, 2020, 69(2): 217-224.

    [29] 程锦,陈章洋,张峪铭,等.多元表面活性剂复配的分子热力学模型研究[J].化工学报,2020,71(10):4590-4600.

    CHENG Jin, CHEN Zhangyang, ZHANG Yuming, et al. Molecular thermodynamic model for compounding of multiple surfactants[J]. CIESC Journal 2020, 71(10): 4590-4600.

    [30] AFERNI A, GUETTARI M, KAMLI M, et al. A structural study of a polymer-surfactant system in dilute and entangled regime: Effect of high concentrations of surfactant and polymer molecular weight[J]. Journal of Molecular Structure, 2020, 1199: 127052.
    [31] 蒋仲安,杨斌,张国梁,等.高原矿井掘进工作面截割粉尘污染效应及通风控尘参数分析[J].煤炭学报,2021,46(7):2146-2157.

    JIANG Zhongan, YANG Bin, ZHANG Guoliang, et al. Analysis of dust pollution effect of cutting dust and ventilation control parameters at the heading face in plateau mines[J]. Journal of China Coal Society, 2021, 46(7): 2146-2157.

  • 期刊类型引用(4)

    1. 乔美英,史有强. 基于指标信息融合的冲击地压危险等级预测. 煤矿安全. 2025(02): 118-125 . 本站查看
    2. 田勇峰,曹东京,许宏阳,魏明华,田利华,薛建军,薛建秋. 切眼外错下孤岛工作面开采冲击危险性分析及防治措施. 煤矿安全. 2024(03): 139-146 . 本站查看
    3. 王飞,马文涛,亢晓涛,焦伟,尚楠,马江鹏,马宏源. 厚硬顶板地面水力致裂防治冲击地压技术研究. 煤炭工程. 2024(08): 59-64 . 百度学术
    4. 毕慧杰,莫云龙,李少刚. 复合厚硬顶板深孔爆破与快速装药工艺实践. 煤矿安全. 2024(12): 31-38 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  155
  • HTML全文浏览量:  12
  • PDF下载量:  116
  • 被引次数: 5
出版历程
  • 发布日期:  2023-04-19

目录

    /

    返回文章
    返回