氧化煤尘的爆炸特性及其变化规律
Explosion Characteristics and variation of oxidized coal dust
-
摘要: 氧化煤是指经历过升温又降温过程的煤体,在矿井火区启封、分层开采、遗煤复采等区域一直广泛存在,这些区域煤炭开发利用产生的煤尘为氧化煤尘。由于煤体发生了不同程度的氧化,内部结构受到影响,所产生氧化煤尘的爆炸特性发生改变。针对不粘煤样,采用程序升温箱对样品进行了不同温度(25、75、115 ℃)的预处理,探讨氧化煤尘爆炸特性在不同变量(氧化煤尘云浓度、氧化煤尘粒径)条件下的变化规律。结果表明:氧化煤尘爆炸过程可划分为4个阶段,分别为初始负压阶段、高压喷尘阶段、爆炸升压阶段和压力衰减阶段;氧化煤尘爆炸特性与煤尘云浓度符合二次多项式规律,随浓度增大而先升后降,T25、T75和T115煤尘最优煤尘云浓度集中在300 g/m3和200 g/m3;在煤尘云浓度一定时,氧化煤尘最大爆炸压力值随粒径增大而减小。Abstract: Oxidized coal is a coal body that has undergone the process of warming up and cooling down, and has been widely used in mine fire area start-up, stratified mining, and re-mining of residual coal, etc. The coal dust generated from coal development and utilization in these areas is oxidized coal dust. Due to the different degrees of oxidation of the coal body, the internal structure is affected, and the explosion characteristics of the resulting oxidized coal dust are changed. For the non-stick coal, this paper used a programmed heating chamber to pretreat the samples at different temperatures(25 ℃, 75 ℃ and 115 ℃) to explore the change in the explosion characteristics of the oxidized coal dust under the conditions of different variables (oxidized coal dust cloud concentration, oxidized coal dust particle size). The results show that the explosion process of oxidized coal dust can be divided into four stages, namely, the initial negative pressure stage, high pressure dust injection stage, explosion boost stage and pressure decay stage; the explosion characteristics of oxidized coal dust and coal dust concentration conform to the quadratic polynomial law, which increases and then decreases with increasing concentration, and the optimal coal dust concentrations of T25, T75 and T115 coal dust are concentrated at 300 g/m3 and 200 g/m3; in the coal dust cloud concentration is constant, the maximum explosion pressure value of oxidized coal dust decreases with the increase of particle size.
-
-
[1] 白亚娥.不同预氧化程度煤二次氧化特性研究[D].西安:西安科技大学,2017. [2] 黄继广,马汉鹏,范春姣,等.我国煤矿安全事故统计分析及预测[J].陕西煤炭,2020,39(3):34-39. HUANG Jiguang, MA Hanpeng, FAN Chunjiao, et al. Statistical analysis and prediction of coal mine safety accidents in China[J]. Shaanxi Coal, 2020, 39(3): 34 -39.
[3] AYOGLU Ferruh Niyazl, ACIKGOZ Bilgehan, TUTKUN Engin, et al. Descriptive characteristics of coal workers’ pneumoconiosis cases in Turkey[J]. Iranian Journal of Public Health, 2014, 43(3): 389-90. [4] POLLOCK D E, POTTS J D, JOY G J. Investigation into dust exposures and mining practices in mines in the southern Appalachian Region[J]. Mining Engineering, 2010, 62(2): 44-49. [5] 高娜,张延松,胡毅亭.温度、压力对甲烷-空气混合物爆炸极限耦合影响的实验研究[J].爆炸与冲击,2017,37(3):453-458. GAO Na, ZHANG Yansong, HU Yiting. Experimental study on methane-air mixtures explosion limits at normal and elevated initial temperatures and pressures[J]. Explosion and Shock Waves, 2017, 37(3): 453-458.
[6] 裴蓓,张子阳,潘荣锟,等.不同强度冲击波诱导沉积煤尘爆炸火焰传播特性[J].煤炭学报,2021,46(2):498-506. PEI Bei, ZHANG Ziyang, PAN Rongkun, et al. Flame propagation characteristics of deposited coal dust explosion induced by shock waves of different intensities[J]. Journal of China Coal Society, 2021, 46(2): 498-506.
[7] 朱云飞,王德明,李德利,等.2000—2016年我国煤矿重特大事故统计分析[J].能源与环保,2018.40(9):40-43. ZHU Yunfei, WANG Deming, LI Deli, et al. Statistics analysis of serious coal mine disasters from 2000 to 2016 in China[J]. China Energy and Environmental Protection, 2018, 40(9): 40-43.
[8] 汤其建,秦汝祥,戴广龙.索特平均直径对煤粉及其在瓦斯气氛下爆炸特性的影响[J].煤炭学报,2021,46(2):489-497. TANG Qijian, QIN Ruxiang, DAI Guanglong. Effect of Sauter mean diameter of coal dust on its explosibility with and without methane gas[J]. Journal of China Coal Society, 2021, 46(2): 489-497.
[9] CAO Weiguo, QIN Qingfeng, CAO Wei, et al. Experimental and numerical studies on the explosion severities of coal dust/air mixtures in a 20-L spherical vessel[J]. Powder Technology, 2017, 310: 17-23. [10] WANG Shunyao, SHI Zhicheng, PENG Xu, et al. Effect of the ignition delay time on explosion severity parameters of coal dust/air mixtures[J]. Powder Technology, 2019, 342: 509-516. [11] TAN B, SHAO Z, XU B, et al. Analysis of explosion pressure and residual gas characteristics of micro-nano coal dust in confined space[J]. Journal of Loss Prevention in the Process Industries, 2020, 64(1): 56-69. [12] 刘天奇,李雨成,罗红波.不同变质程度煤尘爆炸压力特性变化规律实验研究[J].爆炸与冲击,2019,39(9):158-165. LIU Tianqi, LI Yucheng, LUO Hongbo. Experimental study on explosion pressure variation law of coal dustwith different degrees of metamorphism[J]. Explosion and Shock Waves, 2019, 39(9): 158-165.
[13] 刘天奇.不同煤质煤尘云与煤尘层最低着火温度实验研究[J].燃烧科学与技术,2019,25(5):445-450. LIU Tianqi. Experimental study on minimum ignition temperature of coal dust cloud and coal dust layer of different metamorphism[J]. Journal of Combustion Science and Technology, 2019, 25(5): 445-450.
[14] 崔瑞,程五一.点火能量对煤粉爆炸行为的影响[J].煤矿安全,2017,48(4):16-19. CUI Rui, CHENG Wuyi. Influence of ignition energy on explosion behavior of pulverized coal[J]. Safety in Coal Mines, 2017, 48(4): 16-19.
[15] 白建平,范健强,王越,等.粉尘密度对20 L球罐内粉尘分散规律影响[J].中国安全生产科学技术,2017,13(10):37-42. BAI Jianping, FAN Jianqiang, WANG Yue, et al. Effect of dust density on dispersion laws of dust in 20 L spherical tank[J]. Journal of Safety Science and Technology, 2017, 13(10): 37-42.
[16] 赵一姝,范健强,白建平,等.粉尘浓度对20 L球罐内硫磺粉尘分散过程流场特性的影响[J].中国安全生产科学技术,2018,14(7):48-53. ZHAO Yishu, FAN Jianqiang, BAI Jianping, et al. Influence of dust concentration on flow field characteristics of sulfur dust during dispersion process in 20 L spherical tank[J]. Journal of Safety Science and Technology, 2018, 14(7): 48-53.
-
期刊类型引用(2)
1. 常婕. 煤矿煤尘爆炸特性实验及影响因素分析. 山西化工. 2024(04): 152-154 . 百度学术
2. 符见宇. 关于煤尘爆炸性鉴定和干扰因素的问题研究. 内蒙古煤炭经济. 2024(11): 1-3 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 31
- HTML全文浏览量: 2
- PDF下载量: 16
- 被引次数: 2