原位条件下无烟煤热解产物随温度变化研究
Study on variation of anthracite pyrolysis products with temperature under in-situ conditions
-
摘要: 为了研究深埋深无烟煤原位热解采气过程中的气体产物产量特性,采用高温高压三轴试验仪和气相色谱仪,获得100~600 ℃内无烟煤的热解产气量和产物,分析了产物和渗透性之间的关系。研究表明热解产气量随温度的变化可分为4个阶段:在100~200 ℃范围内为第1阶段(脱气阶段),无烟煤产生少部气体,析出的气体主要 N2和O2;在300~400 ℃范围内为第2阶段(热解起始阶段),无烟煤进一步热解,气体产量进一步上升,气体主要由煤热解产生的CH4、CO2、H2和C2H6等组成,400 ℃是热解产气量第1个峰值;在400~500 ℃范围内为第3阶段(热解阶段),由于无烟煤中有机物质的热稳定性所致,导致产气量降低;在500~600 ℃范围内为第4阶段(裂解阶段),热解气体产量又一次持续增加,该部分气体主要为CH4、C2H6和H2;渗透率受热解过程中的产物影响,300 ℃是低渗透煤层注热开采瓦斯合理的注热温度。Abstract: To study the gas product yield characteristics during in-situ pyrolysis of deep buried anthracite for gas extraction, high-temperature and high-pressure triaxial tester and gas chromatography were used to obtain the pyrolysis gas yield and products of anthracite in the range of 100-600 ℃. The relationship between product and permeability was analyzed. The study showed that the variation of pyrolysis gas yield with temperature can be divided into four stages: the first stage(degassing stage) from 100 ℃ to 200 °C, where the anthracite produces small amounts of gas and the precipitated gas is mainly N2 and O2. The second stage ayayrolysis initiation stage) from 300 ℃ to 400 ℃, where the anthracite coal is further pyrolyzed and the gas yield further increases, and the gas is mainly composed of CH4, CO2, H2 and C2H6 produced by coal pyrolysis. 400 ℃ is the first peak of pyrolysis gas production. The range of 400-500 ℃ is the third stage(pyrolysis stage), due to the thermal stability of organic substances in anthracite, resulting in lower gas production. The range of 500-600 ℃ is the fourth stage(cracking stage), and pyrolysis gas production once again continues to increase. The permeability is influenced by the gas yield and gas production during pyrolysis.
-
Keywords:
- anthracite coal /
- in-situ heat injection /
- carbon emissions /
- pyrolysis gas /
- gas extraction
-
-
[1] 冯子军,万志军,赵阳升,等.热力耦合作用下无烟煤煤体变形特征的试验研究[J].岩石力学与工程学报,2010,29(8):1624-1630. FENG Zijun, WAN Zhijun, ZHAO Yangsheng, et al. Experimental investigation into deformation characteristics of anthracite under thermo-mechanical coupling conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1624-1630.
[2] 冯子军,万志军,赵阳升,等.高温三轴应力下无烟煤、气煤煤体渗透特性的试验研究[J].岩石力学与工程学报,2010,29(4):689-696. FENG Zijun, WAN Zhijun, ZHAO Yangsheng, et al. Experimental study of permeability of anthracite and gas coal masses under high temperature and triaxial stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(4): 689-696.
[3] 杨新乐,张永利,李成全,等.考虑温度影响下煤层气解吸渗流规律试验研究[J].岩土工程学报,2008,30(12):1811-1814. YANG Xinle, ZHANG Yongli, LI Chengquan, et al. Experimental study on on desorption and seepage rules of coal-bed gas considering temperature conditions[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1811-1814.
[4] 马东民,张遂安,王鹏刚,等.煤层气解吸的温度效应[J].煤田地质与勘探,2011,39(1):20-23. MA Dongmin, ZHANG Suian, WANG Penggang, et al. Mechanism of coalbed methane desorption at different temperatures[J]. Coal Geology & Exploration, 2011, 39(1): 20-23.
[5] WANG Tao, LI Cheng, ZHOU Binxuan, et al. Experimental investigation of thermal effect in coal pyrolysis process[J]. Fuel Processing Technology, 2020, 200: 106269. [6] 冯子军,万志军.高温三轴应力下煤中甲烷生成特征及在注热开采瓦斯中应用[J].采矿与安全工程学报,2018,35(2):442-448. FENG Zijun, WAN Zhijun. Methane release under triaxial stressed coal at high temperature and its application in methane extracting by heat injection[J]. Journal of Mining & Safety Engineering, 2018, 35(2): 442-448.
[7] 杨玉良,梁卫国,杨晓琴,等.钙芒硝盐岩多场耦合作用下蠕变的温度效应研究[J].煤炭学报,2020,45(3):1070-1080. YANG Yuliang, LIANG Weiguo, YANG Xiaoqin, et al. Temperature effect on creep of glauberite salt rock under multi-field coupling[J]. Journal of China Coal Society, 2020, 45(3): 1070-1080.
[8] CAI Yidong, LIU Dameng, PAN Zhejun, et al. Petrophysical characterization of Chinese coal cores with heat treatment by nuclear magnetic resonance[J]. Fuel (Guildford), 2013, 108: 292-302. [9] IBARRA Josév, MOLINER Rafael, GAVILA.N Maríap. Functional group dependence of cross-linking reactions during pyrolysis of coal[J]. Fuel, 1991, 70(3): 408-413. [10] SUUBERG Ericm, LEE Doyoung, LARSEN Johnw. Temperature dependence of crosslinking processes in pyrolysing coals[J]. Fuel, 1985, 64(12): 1668-1671. [11] ZHANG Lu, QI Shichao, TAKEDA Norihiro, et al. Characteristics of gas evolution profiles during coal pyrolysis and its relation with the variation of functional groups[J]. International Journal of Coal Science & Technology, 2018,5(4): 452-463. [12] CAI Yidong, LIU Dameng, YAO Yanbin, et al. Partial coal pyrolysis and its implication to enhance coalbed methane recovery, Part I: An experimental investigation[J]. Fuel (Guildford), 2014, 132: 12-19. [13] 吕乾龙,刘伟,宋奕澎,等.无烟煤对CO2和CH4的吸附解吸特性研究[J].煤矿安全,2019,50(5):27-30. LYU Qianlong, LIU Wei, SONG Yipeng, et al. Adsorption and desorption characteristics of CO2 and CH4 for anthracite[J]. Safety in Coal Mines, 2019, 50(5): 27-30.
[14] 王汝艳,马凤云,钟梅,等.中温和高温煤沥青的组成结构与性质[J].煤炭学报,2020,45(8):2956-2967. WANG Ruyan, MA Fengyun, ZHONG Mei, et al. Structures and properties of medium-temperature and high-temperature coal tar pitches[J]. Journal of China Coal Society, 2020, 45(8): 2956-2967.
[15] LIU Jiaxun, JIANG Xiumin, SHEN Jun, et al. Pyrolysis of superfine pulverized coal. Part 1. Mechanisms of methane formation[J]. Energy Conversion and Management, 2014, 87: 1027-1038. [16] 刘先新,吉晓波.贫氧环境下褐煤升温氧化特性的实验研究[J].煤矿安全,2021,52(5):36-41. LIU Xianxin, JI Xiaobo. Experimental study on temperature-increasing oxidation characteristics of lignite in oxygen-poor environment[J]. Safety in Coal Mines, 2021, 52(5): 36-41.
[17] LI Jinhu, LI Zenghua, YANG Yongliang, et al. Examination of CO, CO2 and active sites formation during isothermal pyrolysis of coal at low temperatures[J]. Energy (Oxford), 2019, 185: 28. [18] FIGUEIREDO Jl, PEREIRA Mfr, FREITAS Mma, et al. Modification of the surface chemistry of activated carbons[J]. Carbon, 1999, 37(9): 1379-1389. [19] WANG Min, LI Zhongsheng, HUANG Wenbiao, et al. Coal pyrolysis characteristics by TG-MS and its late gas generation potential[J]. Fuel(Guildford), 2015, 156: 243-253. [20] WANG Shugang, ELSWORTH Derek, LIU Jishan. Permeability evolution during progressive deformation of intact coal and implications for instability in underground coal seams[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 58: 34-45.
计量
- 文章访问数: 19
- HTML全文浏览量: 0
- PDF下载量: 13