黏弹煤层介质断层构造槽波响应特征分析
Analysis of response characteristics of fault structural channel wave in viscoelastic coal seam
-
摘要: 隐伏断层是影响工作面透明化建设、煤矿智能化发展的重要地质因素之一,槽波地震勘探是目前探测断层的常用方法。目前,槽波理论研究主要基于煤层弹性各向同性条件,但煤层是由有机物质和无机物质组成的层状沉积岩体,具有较强的黏弹性。基于Kelvin-Voigt黏弹性理论,采用三维交错网格高阶有限差分法,边界吸收采用PML吸收边界算法,研究了煤层黏弹性和断层断距对槽波传播的影响。结果表明:黏弹介质煤层中地震波能量衰减增强,高频部分能量衰减严重,黏弹介质更加接近实际煤层的衰减特性;槽波遇到断层后,z分量高阶Rayleigh槽波发生透射和绕射现象,产生了新的转换波组基阶与高阶Rayleigh槽波;煤层的横波品质因子Qs=50时,基阶槽波具有明显的频散曲线形状, Qs衰减至10时,高阶Rayleigh槽波仍有清晰记录,槽波能量峰值向低频移动;随着断层断距的增大,绕射和透射作用逐渐增强,转换波组能量逐渐增大,断层后z分量的转换波组能量逐渐增强,槽波能量峰值向高频移动。
-
关键词:
- 黏弹煤层 /
- 交错网格高阶有限差分 /
- 槽波响应特征 /
- 断层 /
- 高阶Rayleigh槽波
Abstract: Buried fault is one of the important geological factors affecting the construction of transparent working face and the intelligent development of coal mine. Channel wave seismic exploration is a common method to detect fault at present. At present, the channel wave theory research is mainly based on the elastic isotropic condition of coal seam, but coal seam is a layered sedimentary rock mass composed of organic and inorganic materials, which has strong viscoelasticity. Based on Kelvin Voigt viscoelastic theory, the effects of coal seam viscoelasticity and fault displacement on channel wave propagation are studied by using three-dimensional staggered-grid high-order finite difference method and PML(perfectly matched layer) absorption boundary algorithm. The following conclusions can be obtained. The energy attenuation of seismic wave in viscoelastic medium coal seam is enhanced, and the energy attenuation of high-frequency part is serious. Viscoelastic medium is closer to the attenuation characteristics of actual coal seam. After the channel wave meets the fault, the high-mode Rayleigh channel wave of z component transmits and diffracts, resulting in a new converted waves(fundamental-mode and high-mode Rayleigh channel waves). When the coal seam QS=50, the fundamental-mode channel wave has an obvious dispersion curve shape. When the coal seam QS decays to 10, the high-mode Rayleigh channel waves is still clearly recorded, and the energy peak of channel waves moves to low frequency. With the increase of fault displacement, diffraction and transmission are gradually enhanced, and theenergy of converted wave group is gradually increased. After the fault, the converted wave group energy of z component gradually increases, the peak value of trough wave energy moves to high frequency. -
-
[1] 王国法.煤矿智能化最新技术进展与问题探讨[J].煤炭科学技术,2022,50(1):1-27. WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology, 2022, 50(1): 1-27.
[2] 袁亮,张平松.煤炭精准开采地质保障技术的发展现状及展望[J].煤炭学报,2019,44(8):2277-2284. YUAN Liang, ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society, 2019, 44(8): 2277-2284.
[3] 程建远,刘文明,朱梦博,等.智能开采透明工作面地质模型梯级优化试验研究[J].煤炭科学技术,2020, 48(7):118-126. CHENG Jianyuan, LIU Wenming, ZHU Mengbo, et al. Experimental study on cascade optimization of geological models in intelligent mining transparency working face[J]. Coal Science and Technology, 2020, 48(7): 118-126.
[4] 刘再斌,刘程,刘文明,等.透明工作面多属性动态建模技术[J].煤炭学报,2020,45(7):2628-2635. LIU Zaibin, LIU Cheng, LIU Wenming, et al. Multi-attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society, 2020, 45(7): 2628-2635.
[5] 张平松,欧元超,李圣林.我国矿井物探技术及装备的发展现状与思考[J].煤炭科学技术,2021,49(7):1-15. ZHANG Pingsong, OU Yuanchao, Ll Shenglin. Development quo-status and thinking of mine geophysical prospecting technology and equipment in China[J]. Coal Science and Technology, 2021, 49(7): 1-15.
[6] 刘天放,潘冬明,李德春,等.槽波地震勘探[M].徐州:中国矿业大学出版社,1994. [7] 程建远,聂爱兰,张鹏.煤炭物探技术的主要进展及发展趋势[J].煤田地质与勘探,2016,44(6):136-141. CHENG Jianyuan, NIE Ailan, ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration, 2016, 44(6): 136-141.
[8] 马志超,杨高峰,王克南.利用透射槽波衰减系数探查煤层内部的断层响应特征研究[J].煤炭技术,2021, 40(3):49-51. MA Zhichao, YANG Gaofeng, WANG Kenan. Fault response characteristics of coal seam are investigated by using attenuation coefficient of transmitted in-seam wave[J]. Coal Technology, 2021, 40(3): 49-51.
[9] 杨焱钧,朱书阶,张孝文,等.反射槽波探测技术中速度分析方法研究[J].煤田地质与勘探,2020,48(5):218-224. YANG Yanjun, ZHU Shujie, ZHANG Xiaowen, et al. Velocity analysis method of reflected in-seam wave detection technique[J]. Coal Geology & Exploration, 2020, 48(5): 218-224.
[10] 武延辉,王伟,滕吉文,等.透射与反射槽波联合探测小构造应用研究—以山西龙泉矿区为例[J].地球物理学进展,2021,36(3):1325-1332. WU Yanhui, WANG Wei, TENG Jiwen, et al. Application and research on technology of channel wave seismic transmission and reflection method: an example from Shanxi Longquan mining area[J]. Progress in Geophysics, 2021, 36(3): 1325-1332.
[11] 许小凯,王赟,孟召平.六种不同煤阶煤的品质因子特征[J].地球物理学报,2014,57(2):644-650. XU Xiaokai, WANG Yun, MENG Zhaoping. Quality factor characteristics of six metamorphic kinds of coal in China[J]. Chinese Journal of Geophysics, 2014, 57(2): 644-650.
[12] 程久龙,刘天放.黏弹性介质中Love型槽波的传播特性[C]//中国地球化物理学会第八届学术年会论文集.北京:地震出版社,1992. [13] YANG Xiaohui, CAO Siyuan, LI Dechun, et al. Analysis of quality factors for Rayleigh channel waves[J]. Applied Geophysics, 2014, 11(1): 107-114. [14] LI Hui, ZHU Peimin, JI Guangzhong. Channel wave propagation analysis of the 3D tunnel model in isotropic viscoelastic medium[C]//Society of Exploration Geophysicists International Exposition and 83rd Annual Meeting(SEG Houston 2013). Society of Exploration Geophysicists, 2013: 3564-3568. [15] LI Hui, ZHU Peimin, JI Guangzhong, et al. Modified image algorithm to simulate seismic channel waves in 3D tunnel model with rugged free surfaces[J]. Geophysical Prospecting, 2015, 64 (5): 1259-1274. [16] 姬广忠,吴荣新,张平松,等.黏弹TI煤层介质3层模型Love槽波频散与衰减特征[J].煤炭学报,2021, 46(2):566-577. JI Guangzhong, WU Rongxin, ZHANG Pingsong, et al. Dispersion and attenuation characteristics of Love channel waves in the three-layer model of viscoelastic TI coal seam media[J]. Journal of China Coal Society, 2021, 46(2): 566-577.
[17] JI Guangzhong, ZHANG Pingsong, WU Rongxin, et al. Calculation method and characteristic analysis of dispersion curves of Rayleigh channel waves in transversely isotropic media[J]. Geophysics, 2020, 85(6): 187-198. [18] 张壹,王赟,王祥春,等.黏弹性介质地震波吸收衰减研究进展[J].石油物探,2021,60(2):238-250. ZHANG Yi, WANG Yun, WANG Xiangchun, et al. Research progress on the absorption attenuation of seismic waves in viscoelastic media[J]. Geophysical Prospecting for Petroleum, 2021, 60(2): 238-250.
[19] 姬广忠,程建远,朱培民,等.煤矿井下槽波三维数值模拟及频散分析[J].地球物理学报,2012,55(2):645-654. JI Guangzhong, CHENG Jianyuan, ZHU Peimin, et al. 3-Dnumerical simulation and dispersion analysis of in-seam wave in underground coal mine[J]. Chinese Journal of Geophysics, 2012, 55(2): 645-654.
[20] BERENGER J P. A perfectly matched layer for the absorption of electromagnetics waves[J]. Journal Computation Physics, 1994, 114: 185-200. -
期刊类型引用(1)
1. 闫国锋,闫振国. 双龙煤矿超声波增透煤层与瓦斯抽采实践. 陕西煤炭. 2022(06): 178-182 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 29
- HTML全文浏览量: 0
- PDF下载量: 17
- 被引次数: 1