• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

煤矿监控调度作业疲劳程度分级与判定研究

徐超远, 栗继祖, 徐新华

徐超远, 栗继祖, 徐新华. 煤矿监控调度作业疲劳程度分级与判定研究[J]. 煤矿安全, 2022, 53(12): 253-258.
引用本文: 徐超远, 栗继祖, 徐新华. 煤矿监控调度作业疲劳程度分级与判定研究[J]. 煤矿安全, 2022, 53(12): 253-258.
XU Chaoyuan, LI Jizu, XU Xinhua. Research on classification and determination method of work fatigue level of coal mine dispatchers[J]. Safety in Coal Mines, 2022, 53(12): 253-258.
Citation: XU Chaoyuan, LI Jizu, XU Xinhua. Research on classification and determination method of work fatigue level of coal mine dispatchers[J]. Safety in Coal Mines, 2022, 53(12): 253-258.

煤矿监控调度作业疲劳程度分级与判定研究

Research on classification and determination method of work fatigue level of coal mine dispatchers

  • 摘要: 为了能够准确地判断出煤矿监控调度员的疲劳程度,降低煤矿监控调度作业的失误率;运用眼动追踪技术进行煤矿监控调度模拟实验,采集作业者眼动数据与主客观疲劳判定值;利用K-means聚类算法划分疲劳等级数,训练神经网络搭建煤矿监控调度作业疲劳程度预测模型。结果表明:最佳疲劳等级数划分为3类,神经网络预测模型拟合度为90.58%。用预测模型对山西某煤矿监控作业模式进行测试,模型实地预测平均误差为6.26%,预测效果较好。
    Abstract: In order to accurately determine the level of fatigue of coal mine monitoring and dispatching operators and to reduce the error rate of coal mine monitoring and dispatching operations, a simulation experiment of coal mine monitoring and dispatching was carried out using eye tracking technology to collect the operator’s eye movement data and objective and subjective fatigue determination values. The K-means clustering algorithm was used to classify fatigue levels and train a neural network to build a fatigue prediction model for coal mine monitoring and dispatching operations. The results showed that the best fatigue level was classified into three categories and the fitting degree of the neural network prediction model was 90.58%. The prediction model was tested on a coal mine monitoring operation model in Shanxi Province, and the average error of the model field prediction was 6.26%, which was a good prediction effect.
  • [1] 廖斌,冯海芹,滕卉敏,等.认知性VDT持续监控作业人因可靠性预测模型研究[J].中国安全科学学报,2016,26(5):53-58.

    LIAO Bin, FENG Haiqin, TENG Huimin, et al. Model for predicting human reliability in cognitive VDT continuous monitoring operation[J]. China Safety Science Journal, 2016, 26(5): 53-58.

    [2] 栗继祖,徐丽丽,郭彦豫,等.智能化煤矿监控与巡视作业行为模式与认知机理研究综述[J].中国煤炭,2021,47(1):57-63.

    LI Jizu, XU Lili, GUO Yanyu, et al. Overview on research of behavior pattern and cognitive mechanism of monitoring and inspection work in intelligent coal mine[J]. China Coal, 2021, 47(1): 57-63.

    [3] 汪磊,孙瑞山.基于面部特征识别的管制员疲劳监测方法研究[J].中国安全科学学报,2012,22(7):66.

    WANG Lei, SUN Ruishan. Study on face feature recognition-based fatigue monitoring method for air traffic controller[J]. China Safety Science Journal, 2012, 22(7): 66.

    [4] 吴雪琴,廖斌.基于疲劳模式识别的VDT作业工间休息机制[J].中国安全生产科学技术,2021,17(3):169-174.

    WU Xueqin, LIAO Bin. Break mechanism of VDT continuous operation based on fatigue pattern recognition[J]. Journal of Safety Science and Technology, 2021, 17(3): 169-174.

    [5] 吕庆文,樊树海,徐文浩,等.基于DORATASK法的标准作业负荷评估模型[J].中国安全科学学报,2020, 30(8):183-188.

    LYU Qingwen, FAN Shuhai, XU Wenhao, et al. Standard operational workload assessment model based on DORATASK method[J]. China Safety Science Journal,2020, 30(8): 183-188.

    [6] 陈小强,熊烨,王英,等.面部多特征融合的列车司机疲劳检测方法研究[J].铁道学报,2021,43(12):70.

    CHEN Xiaoqiang, XIONG Ye, WANG Ying, et al. Fatigue detection method for train drivers based on facial multiple feature fusion[J]. Journal of the China Railway Society, 2021, 43(12): 70.

    [7] 牛国庆,李师.脑力疲劳与非疲劳状态眼动指标的判别[J].安全与环境学报,2019,19(1):88-93.

    NIU Guoqing, LI Shi. Identification and determination of the mental fatigue status through the eyelid movement frequencies[J]. Journal of Safety and Environment, 2019, 19(1): 88-93.

    [8] DE Naurois C J, BOURDIN C, BOUGARD C, et al. Adapting artificial neural networks to a specific driver enhances detection and prediction of drowsiness[J]. Accident Analysis & Prevention, 2018, 121(12): 118.
    [9] HUANG W, SUN Z, AMP L. Discussion on “regulations on railway train traction calculation” including high speed EMU[J]. Railway Locomotive & Car, 2015, 111(7): 203-204.
    [10] 管凯捷,姚康,任谊文,等.基于头动与眼动的脑疲劳检测方法研究[J].航天医学与医学工程,2020,33(3):214-220.

    GUAN Kaijie, YAO Kang, REN Yiwen, et al. Research on mental fatigue detection method based on head movement and eye movement[J]. Space Medicine & Medical Engineering, 2020, 33(3): 214-220.

  • 期刊类型引用(2)

    1. 徐丽丽,栗继祖,徐新华. 智能化矿井监控调度作业的认知作业分析及认知疲劳判定. 矿业安全与环保. 2024(04): 103-109 . 百度学术
    2. 李乃文,吴植楷. 基于事件相关电位的监控员任务切换刺激模态差异性对警觉度的影响研究. 煤矿安全. 2024(10): 251-256 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  26
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 4
出版历程
  • 发布日期:  2022-12-19

目录

    /

    返回文章
    返回