• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

柠条塔井田南翼隐伏火烧区特征及富水性评价

侯恩科, 杨斯亮, 文强, 高利军, 王建文, 车晓阳, 童仁剑, 张琦

侯恩科, 杨斯亮, 文强, 高利军, 王建文, 车晓阳, 童仁剑, 张琦. 柠条塔井田南翼隐伏火烧区特征及富水性评价[J]. 煤矿安全, 2022, 53(11): 191-199.
引用本文: 侯恩科, 杨斯亮, 文强, 高利军, 王建文, 车晓阳, 童仁剑, 张琦. 柠条塔井田南翼隐伏火烧区特征及富水性评价[J]. 煤矿安全, 2022, 53(11): 191-199.
HOU Enke, YANG Siliang, WEN Qiang, GAO Lijun, WANG Jianwen, CHE Xiaoyang, TONG Renjian, ZHANG Qi. Characteristics and water abundance evaluation of concealed burning area in southern of Ningtiaota Coal Mine[J]. Safety in Coal Mines, 2022, 53(11): 191-199.
Citation: HOU Enke, YANG Siliang, WEN Qiang, GAO Lijun, WANG Jianwen, CHE Xiaoyang, TONG Renjian, ZHANG Qi. Characteristics and water abundance evaluation of concealed burning area in southern of Ningtiaota Coal Mine[J]. Safety in Coal Mines, 2022, 53(11): 191-199.

柠条塔井田南翼隐伏火烧区特征及富水性评价

Characteristics and water abundance evaluation of concealed burning area in southern of Ningtiaota Coal Mine

  • 摘要: 煤层火烧区在我国西部煤炭区大面积分布,当火烧区内烧变岩含水层与其他含水层有较强水力联系时,会对煤矿安全开采构成严重威胁。以柠条塔井田南翼东南角1-2上煤隐伏火烧区为例,基于以往各类水文地质资料,恢复了保德组沉积前古地形并分析了隐伏火烧区地层特征和补径排水文地质特征;采用因子分析法提取了反映隐伏火烧区含水层的富水性特征因子,通过GIS空间叠加方式得到隐伏火烧区复合含水层富水性综合分区。结果表明:1-2上煤层自燃时代为早白垩世末至上新世期间,古冲沟的发育为煤层的自燃和烧变岩的形成提供了有利条件;隐伏火烧区内烧变岩含水层和风化基岩含水层基本连为一体,构成统一含水层;1-2上煤覆岩组合关系可分为3类:即烧变岩-风化基岩、煤层-烧变岩-风化基岩、煤层-烧变岩-正常基岩-风化基岩组合;强富水性区主要分布于火烧区的北部与西部小范围内,中等富水性区沿北西-南东向呈带状分布于火烧区内,隐伏火烧区东部及北部区域富水性相对较弱,弱富水性区域均分布于隐伏火烧区外。与井下探放水钻孔涌水量对比,该富水性分区评价结果与实际吻合较好。
    Abstract: Coal seam fire area is widely distributed in western coal area of China. When there is a strong hydraulic connection between the burned rock aquifer and other aquifers in the coal seam fire area, it will pose a serious threat to the safe mining of coal mine. Taking the 1-2 upper coal concealed burning area in the southeast corner of Ningtiaota Coal Mine as an example, based on various past hydro-geological data, the ancient topography before the deposition of Baode Formation was restored, and the stratum characteristics of the concealed fire area and the geological characteristics of the compensation channel drainage were analyzed. The factor analysis method is used to extract the characteristic factors reflecting the water abundance of burnt rock and weathered bedrock aquifer, and the comprehensive water-rich zone of burnt rock and weathered bedrock aquifer is obtained through GIS superposition method. The results show: the 1-2 upper coal seam burned from the early Cretaceous to the Pliocene, the development of ancient gullies provides favorable conditions for the formation of spontaneous combustion and burning metamorphic rocks in coal seams; the burnt rock aquifer and weathered bedrock aquifer in the concealed burning area are basically connected together to form a unified aquifer; the overburden rock combination relationship on 1-2 upper coal concealed burning area can be divided into three types, namely burnt rock-weathered bedrock combination, coal seam-burnt rock-weathered bedrock combination, coal seam-burnt rock-normal bedrock-weathered bedrock combination. Strong water abundance areas are mainly distributed in a small area in the north and west of the burning area, the medium water abundance areas are distributed in the burning area in a belt along the northwest-southeast direction; the eastern and northern areas of the concealed burning area are relatively weak in water abundance; the weak water abundance areas are distributed outside concealed burning area. Compared with the water inflow of underground water exploration and release boreholes, the evaluation of water abundance is in good agreement with the practice.
  • [1] 王双明,段中会,马丽,等.西部煤炭绿色开发地质保障技术研究现状与发展趋势[J].煤炭科学技术,2019, 47(2):1-6.

    WANG Shuangming, DUAN Zhonghui, MA Li, et al. Research status and future trends of geological assuance technology for coal green development in Western China[J]. Coal Science and Technology, 2019, 47(2): 1-6.

    [2] 姬中奎.柠条塔矿S1210工作面突水条件分析[J].煤矿安全,2014,45(8):188-191.

    JI Zhongkui. Analysis on water inrush condition of S1210 working face in Ningtiaota Coal Mine[J]. Safety in Coal Mines, 2014, 45(8): 188-191.

    [3] 董书宁,刘其声.华北型煤田中奥陶系灰岩顶部相对隔水段研究[J].煤炭学报,2009,34(3):289-292.

    DONG Shuning, LIU Qisheng. Study on relative aguic-lude existed in mid-ordovician limestone top in North China coalfield[J]. Journal of China Coal Society, 2009, 34(3): 289-292.

    [4] 侯恩科,陈培亨.神府煤田煤层自燃研究[J].西安矿业学院学报,1993(2):137-142.

    HOU Enke, CHEN Peiheng. Study on spontaneous combustion of coal seams in Shenfu coal field[J]. Journal of Xi’an Mining Institute, 1993(2): 137-142.

    [5] 陈述彭,鲁学军,周成虎.地理信息系统导论[M].北京:科学出版社,1999.
    [6] 许珂.台格庙矿区顶板涌(突)水危险性评价与矿井涌水量预测[D].北京:中国矿业大学(北京),2016.
    [7] 侯恩科,童仁剑,王苏健,等.陕北侏罗纪煤田风化基岩富水性Fisher模型预测方法[J].煤炭学报,2016, 41(9):2312-2318.

    HOU Enke, TONG Renjian, WANG Sujian, et al. Prediction method for the water enrichment of weathered bedrock based on Fisher model in Northern Shaaxi Jurassic coalfield[J]. Journal of China Coal Society, 2016, 41(9): 2312-2318.

    [8] 曾一凡,李哲,宫厚建,等.顶板风化基岩含水层富水特征与涌(突)水危险性预测[J].煤炭工程,2018,50(2):100-104.

    ZENG Yifan, LI Zhe, GONG Houjian, et al. Water abundance characteristics in aquifer of weathered roof bedrock and prediction on water inrush risk[J]. Coal Engineering, 2018, 50(2): 100-104.

    [9] 郭启琛,李文平,郭太刚.基于FAHP-GRA法的风积沙覆盖风化带潜水富水性评价[J].煤矿安全,2018, 49(12):35-40.

    GUO Qichen, LI Wenping, GUO Taigang. Evaluation of phreatic water abundance in weathering zone covered by eolian sand based on FAHP-GRA[J]. Safety in Coal Mines, 2018, 49(12): 35-40.

    [10] 张池,王鹏飞.烧变岩及风化基岩层富水性探查[J].煤炭技术,2018,37(3):175-177.

    ZHANG Chi, WANG Pengfei. Study on water-richness of burnt rock and weathered bedrock[J]. Coal Technology, 2018, 37(3): 175-177.

    [11] 吴正飞,邢修举,代凤强.综采工作面顶板上覆烧变岩富水性的精细探测研究[J].能源与环保,2018,40(5):140-143.

    WU Zhengfei, XING Xiuju, DAI Fengqiang. Research on precise exploration of water-fired buried rock on fully-mechanized working face[J]. China Energy and Environmental Protection, 2018, 40(5): 140-143.

    [12] 李明星.塔里木盆地北缘侏罗系烧变岩富水性精细探测[J].煤矿开采,2018,23(5):15-17.

    LI Mingxing. Exquisite exploration of Jurassic burnt rock water abundance of Northern Part of Tarim Basin[J]. Coal Mining Technology, 2018, 23(5): 15-17.

    [13] 白铭波,霍军鹏,雷鹏翔.TEM反演技术在浅埋煤层烧变岩水勘查中的应用[J].煤炭技术,2020,39(6):54-56.

    BAI Mingbo, HUO Junpeng, LEI Pengxiang. Application of TEM inversion technology in exploration of burnt rock water in shallow coal seam[J]. Coal Technology, 2020, 39(6): 54-56.

    [14] 杨明慧,刘池洋.鄂尔多斯中生代陆相盆地层序地层格架及多种能源矿产聚集[J].石油与天然气地质,2006(4):563-570.

    YANG Minghui, LIU Chiyang. Sequence stratigraphic framework and its control on accumulation of various energy resources in the Mesozoic continental basins in Ordos[J]. Oil & Gas Geology, 2006(4): 563-570.

    [15] 郭顺,王震亮,闫继福.陕北地区侏罗系层序地层与油气聚集关系[J].地层学杂志,2010,34(2):212.

    GUO Shun, WANG Zhenliang, YAN Jifu. Relation of sequence stratigraphy and oil-gas accumulation of the Jurassic in the Northern Shaanxi[J]. Journal of Stratigraphy, 2010, 34(2): 212.

    [16] 黄克兴,侯恩科.鄂尔多斯盆地北部早、中侏罗世古气候[J].煤田地质与勘探,1988(3):3-8.

    HUANG Kexing, HOU Enke. Early-middle Jurassic climate in Northern Ordos basin[J]. Coal Geology & Exploration, 1988(3): 3-8.

    [17] 侯恩科,童仁剑,冯洁,等.烧变岩富水特征与采动水量损失预计[J].煤炭学报,2017,42(1):175-182.

    HOU Enke, TONG Renjian, FENG Jie, et al. Water enrichment characteristics of burnt rock and prediction on water loss caused by coal mining[J]. Journal of China Coal Society, 2017, 42(1): 175-182.

    [18] 范立民.生态脆弱区烧变岩研究现状及方向[J].西北地质,2010,43(3):57-65.

    FAN Limin. Research status and research directions of burnt rocks in vulnerable ecological region[J]. Northwestern Geology, 2010, 43(3): 57-65.

    [19] 姬中奎,薛小渊,杨志斌,等.神府煤田张家峁煤矿烧变岩与水库水力联系研究[J].中国煤炭地质,2019, 31(4):57-61.

    JI Zhongkui, XUE Xiaoyuan, YANG Zhibin, et al. Study on hydraulic connection between burnt rock and reservoir in Zhangjiamao Coalmine, Shenfu Coalfield[J]. Coal Geology of China, 2019, 31(4): 57-61.

    [20] J Paul Brooks, Eva K Lee. Analysis of the consistency of a mixed integer programming-based multi-category constrained discriminant model[J]. Annals of Operations Research, 2010, 174(1):147-168.
    [21] Ali Sophian, Gui Yun Tian, David Taylor, et al. A feature extraction technique based on principal component analysis for pulsed Eddy current NDT[J]. NDT & E International, 2003, 36(1): 37-41.
    [22] 杨永国.数学地质[M].徐州:中国矿业大学出版社,2010.
  • 期刊类型引用(7)

    1. 杨帆,热西提·亚力坤,薛小渊,宋世骏,胡俭,张泽宇,姬中奎,黄雷. 浅埋煤层烧变岩地球化学与变质矿物相特征. 西北大学学报(自然科学版). 2024(02): 329-344 . 百度学术
    2. 张跃宏,王晓东,王海,武博强,姬中奎,朱世彬,韩乐,冯龙飞. 丙烯酰胺改性粉煤灰聚合增韧注浆材料研究. 煤田地质与勘探. 2024(05): 98-106 . 百度学术
    3. 王海. 隐伏火烧区烧变岩含水层水害治理技术研究. 煤田地质与勘探. 2024(05): 88-97 . 百度学术
    4. 张晓枫,郑志元. 基于GIS的合肥滨湖国家森林公园景观质量评价. 中南林业科技大学学报. 2024(09): 179-188 . 百度学术
    5. 李舒,杨泽元,马雄德,刘胜祖,方楚婧,张奥奇. 神府南区延安组含水层富水性对矿井涌水量的影响研究. 煤田地质与勘探. 2023(06): 92-102 . 百度学术
    6. 杨涛,谢紫琦,胡婧妍,王辰. 基于回归Shapley值分解法的回采工作面瓦斯涌出量影响因素研究. 煤矿安全. 2023(11): 18-24 . 本站查看
    7. 董博,李旭,史云,李磊,乔佳妮. 基于地质保障系统的煤矿安全开采规划控制方法. 煤矿安全. 2023(12): 167-174 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  77
  • HTML全文浏览量:  8
  • PDF下载量:  17
  • 被引次数: 8
出版历程
  • 发布日期:  2022-11-19

目录

    /

    返回文章
    返回