基于测井资料与优化通用向量机的煤层气含量预测模型
Prediction model of CBM content based on logging data and optimized general vector machine
-
摘要: 为实现煤层含气量的高精度评价,合理地进行生产布局及高效勘探开发,以沁水煤田柿庄南区3号煤层含气量密闭取心实验数据为样本,提出了基于弹性网络优选测井曲线的改进的量子粒子群优化通用向量机混合预测模型EN-IQPSO-GVM。模型在煤层含气量测井响应特征和敏感性分析基础上,将弹性网络用于通用向量机模型特征输入参数的优选;提出了一种改进的量子粒子群算法优化GVM网络权值阈值,构建了基于弹性网络-改进量子粒子群算法的通用向量机煤层含气量预测模型;将该模型用于靶向区盲井煤层含气量预测,与相同优化策略下的支持向量机和BP神经网络模型及传统多元回归模型进行对比,分析该模型性能及适应性。结果表明:新模型盲井预测精度从21.83%减小到4.25%,具有更强的泛化能力,更适用于非均质性强的煤储层含气量高精度评价。Abstract: In order to achieve high-precision evaluation of CBM gas content, reasonable production layout and efficient exploration and development, taking the gas content of No.3 coal seam in Shizhuang south area of Qinshui Coalfield as a sample, an improved quantum particle swarm optimization general vector machine hybrid prediction model(EN-IQPSO-GVM) based on elastic network optimization logging curve is proposed in this paper. Firstly, based on the response characteristics and sensitivity analysis of coal seam gas content logging, the Elastic Network(EN) is used to optimize the feature input parameters of the general vector machine model. Then, an improved quantum particle swarm optimization(IQPSO) algorithm is proposed to optimize the GVM network weight threshold, and a general vector machine coal seam gas content prediction model based on elastic network and improved quantum particle swarm optimization algorithm is constructed. Finally, the model is used to predict the coal seam gas content of blind wells in the target area, and compared with the support vector machine, BP neural network model and the traditional multiple regression model under the same optimization strategy to analyze the performance and adaptability of the model. The results show that the blind well prediction accuracy of the new model is reduced from 21.83% to 4.25%, which has stronger generalization ability and is more suitable for the high-precision evaluation of gas content in highly heterogeneous coal reservoirs, and can lay a geological foundation for the exploration and development of coalbed methane target areas.
-
-
[1] 赵庆波.中国煤层气地质特征及勘探新领域[J].天然气工业,2004,24(5):4-7. ZHAO Qingbo. Geological features of the coalbed methane in China and its new exploration domains[J]. Natural Gas Industry, 2004, 24(5): 4-7.
[2] 李泽辰,杜文凤,胡进奎,等.鄂尔多斯盆地临兴区块测井含气量解释方法[J].煤炭学报,2018,43(S2):490-498. LI Zechen, DU Wenfeng, HU Jinkui, et al. Interpretation method of gas content in logging of Linxing block in Ordos Basin[J]. Journal of China Coal Society, 2018, 43(S2): 490-498.
[3] Liu S, Tang S, Yin S. Coalbed methane recovery from multilateral horizontal wells in Southern Qinshui Basin[J]. Advances in Geo-Energy Research, 2018, 2(1): 34-42. [4] 葛祥,何传亮,董震.基于动态吸附模型的煤岩吸附气含量测井计算新方法[J].测井技术,2014,38(6):740-744. GE Xiang, HE Chuanliang, DONG Zhen. New method to calculate adsorbed gas content of coalbed based on the dynamic adsorption model[J]. Well Logging Technology, 2014, 38(6): 740-744.
[5] Hawkins J M, Schraufnagel R A, Olszewsk A J. Estimating coal-bed gas content and sorption isotherm using well log data[C]//The 67th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers. Washington: SPE, 1992: 491-501. [6] Li K, Kong S, Xia P, et al. Microstructural characterisation of organic matter pores in coal-measure shale[J]. Advances in Geo-Energy Research, 2020, 4(4): 372. [7] 傅雪海,张小东,韦重韬.煤层含气量的测试、模拟与预测研究进展[J].中国矿业大学学报,2021,50(1):13-31. FU Xuehai, ZHANG Xiaodong, WEI Chongtao. Review of research on testing, simulation and prediction of coal-bed methane content[J]. Journal of China University of Mining & Technology, 2021, 50(1): 13-31.
[8] 黄兆辉,邹长春,杨玉卿,等.沁水盆地南部TS地区煤层气储层测井评价方法[J].现代地质,2012,26(6):1275-1282. HUANG Zhaohui, ZOU Changchun, YANG Yuqing, et al. Coalbed methane reservoir evaluation from wireline logs in TS district, southern Qinshui Basin[J]. Geoscience, 2012, 26(6): 1275-1282.
[9] 孟召平,郭彦省,张纪星.基于测井参数的煤层含气量预测模型与应用[J].煤炭科学技术,2014,42(6):25. MENG Zhaoping, GUO Yansheng, ZHANG Jixing. Application and prediction model of coalbed methane content based on logging parameters[J]. Coal Science and Technology, 2014, 42(6): 25.
[10] Pan W, Suping P, Taohua H. A novel approach to total organic carbon content prediction in shale gas reservoirs with well logs data, Tonghua Basin, China[J]. Journal of Natural Gas Science & Engineering, 2018, 55(1): 1-15. [11] 陈涛,张占松,周雪晴,等.基于测井参数优选的煤层含气量预测模型[J].煤田地质与勘探,2021,49(3):227-235. CHEN Tao, ZHANG Zhansong, ZHOU Xueqing, et al. Prediction model of coalbed methane(CBM) content based on well logging curve optimization[J]. Coal Geology & Exploration, 2021, 49(3): 227-235.
[12] 侯颉,邹长春,杨玉卿,等.测井解释中煤层含气量评价方法对比研究[J].煤炭科学技术,2015,43(12):157-161. HOU Jie, ZOU Changchun, YANG Yuqing, et al. Comparison study on evaluation methods of coalbed methane gas content with logging interpretation[J]. Coal Science and Technology, 2015, 43(12): 157-161.
[13] 董红,侯俊胜,李能根,等.煤层煤质和含气量的测井评价方法及其应用[J].物探与化探,2001,25(2):138-143. DONG Hong, HOU Junsheng, LI Nenggen, et al. The logging evaluation method for coal quality and methane[J]. Geophysical and Geochemical Exploration, 2001, 25(2): 138-143.
[14] 刘荣芳,王建功,刘文华,等.基于煤岩结构的煤层含气量测井评价方法[J].中国煤层气,2014,11(4):22. LIU Rongfang, WANG Jiangong, LIU Wenhua, et al. CBM logging evaluation method based on coal seam structure[J]. China Coalbed Methane, 2014, 11(4): 22.
[15] 彭苏萍,杜文凤,殷裁云,等.基于AVO反演技术的煤层含气量预测[J].煤炭学报,2014,39(9):1792. PENG Suping, DU Wenfeng, YIN Caiyun, et al. Coalbed gas content prediction based on AVO inversion[J]. Journal of China Coal Society, 2014, 39(9): 1792-1796.
[16] 田忠斌,董银萍,王建青,等.沁水盆地榆社—武乡深部煤层地震相控反演及煤层气甜点预测[J].煤炭学报,2018,43(6):1605-1613. TIAN Zhongbin, DONG Yinping, WANG Jianqing, et al. Seismic facies controlled inversion and CBM sweet spot prediction in deep coalseam of Yushe Wuxiang block in Qinshui Basin[J]. Journal of China Coal Society, 2018, 43(6): 1605-1613.
[17] 孟召平,田永东,雷旸.煤层含气量预测的BP神经网络模型与应用[J].中国矿业大学学报,2008,37(4):456-461. MENG Zhaoping, TIAN Yongdong, LEI Yang. Prediction models of coal bed gas content based on BP neural networks and its applications[J]. Journal of China University of Mining & Technology, 2008, 37(4): 456.
[18] 刘爱华,傅雪海,王可新,等.支持向量机预测煤层含气量[J].西安科技大学学报,2010,30(3):309-313. LIU Aihua, FU Xuehai, WANG Kexin, et al. Prediction of coalbed gas content based on support vector machine regression[J]. Journal of Xi’an University of Science and Technology, 2010, 30(3): 309-313.
[19] Liqi Z, Chaomo Z, Zhansong Z, et al. High-precision calculation of gas saturation in organic shale pores using an intelligent fusion algorithm and a multi-mineral model[J]. Advances in Geo-Energy Research, 2020, 4(2): 135-151. [20] Wood D A, Choubineh A. Reliable predictions of oil formation volume factor based on transparent and auditable machine learning approaches[J]. Advances in Geo-Energy Research, 2019, 3(3): 225-241. [21] 周雪晴,张占松,朱林奇,等.基于双向长短期记忆网络的流体高精度识别新方法[J].中国石油大学学报(自然科学版),2021,45(1):69-76. ZHOU Xueqing, ZHANG Zhansong, ZHU Linqi, et al. A new method for high-precision fluid identification in bidirectional long short-term memory network[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(1): 69-76.
[22] Qingguuo Z, Huaming C, Hong Z, et al. Alocal field correlated and monte carlo based shallow neural network model for nonlinear time series prediction[J]. EAI Endorsed Transactions on Scalable Information Systems, 2016, 16(8): 5-7. [23] Binbin Y, Fucun L, Qingquan L, et al. Derivative-based acceleration of general vector machine[J]. Soft Computer, 2019, 23: 987-995. [24] 郭广山,邢力仁.柿庄南煤层气富集主控因素及开发潜力分析[J].洁净煤技术,2015,21(4):117-121. GUO Guangshan, XING Liren. Primary geological controlling factors of coalbed methane enrichment and its exploration potential in Southern Shizhuang Block[J]. Clean Coal Technology, 2015, 21(4): 117-121.
[25] Zou H,Hastie T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2005, 67(2): 301-320. [26] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]// Proceeding of the IEEE 6th International Symposium on Micro Machine and Human Science. US: IEEE, 1995: 39-43. [27] Hastie T, Efron B, Johnstone I M, et al. Least angle regression[J]. Annals of Statistics, 2004, 32(2): 407. [28] Rashedi E, Nezamabadi Pour H, Saryazdi S. BGSA: Binary gravitational search algorithm[J]. Natural Computing, 2010, 9(3): 727-745. -
期刊类型引用(0)
其他类型引用(1)
计量
- 文章访问数: 20
- HTML全文浏览量: 12
- PDF下载量: 19
- 被引次数: 1