不同煤级煤纳米力学性能的Micro-Raman结构响应

    韩雅婷, 孙蓓蕾

    韩雅婷, 孙蓓蕾. 不同煤级煤纳米力学性能的Micro-Raman结构响应[J]. 煤矿安全, 2022, 53(11): 7-14.
    引用本文: 韩雅婷, 孙蓓蕾. 不同煤级煤纳米力学性能的Micro-Raman结构响应[J]. 煤矿安全, 2022, 53(11): 7-14.
    HAN Yating, SUN Beilei. Micro-Raman structural responses of nano-mechanical properties of different coal grades[J]. Safety in Coal Mines, 2022, 53(11): 7-14.
    Citation: HAN Yating, SUN Beilei. Micro-Raman structural responses of nano-mechanical properties of different coal grades[J]. Safety in Coal Mines, 2022, 53(11): 7-14.

    不同煤级煤纳米力学性能的Micro-Raman结构响应

    Micro-Raman structural responses of nano-mechanical properties of different coal grades

    • 摘要: 煤的力学性质具有非均质性及多尺度效应,从纳米尺度认识煤力学性质及与其组成结构之间的关系,是理解煤储层的压裂改造机制及裂纹扩展机理的关键。利用原子力显微镜和显微拉曼对不同煤级煤的镜质组进行测试,获得煤样的力学和结构参数。结果表明:镜质组的弹性模量E在0.66~7.58 GPa之间,且弹性模量随镜质组最大反射率Ro的增加而增加;同时随着Ro的增大,拉曼结构参数呈现有规律的变化;将弹性模量E与拉曼结构参数建立关系,发现(G-D)峰位差、多环芳烃的相对含量与致弹性模量均呈现明显的正相关关系,FWHM-G与E呈现负相关关系,反映了结构有序度的增加会导致弹性模量增大,表明随着成熟度的增加,促使大分子结构排列紧密且分子间作用力增大,导致弹性模量也随之增大。
      Abstract: The mechanical properties of coal are heterogeneous and in multi-scale. Understanding the coal mechanical properties and structure in nano-scale is the key to know the fracturing transformation and crack expansion mechanisms of coal reservoirs. AFM and micro-Raman were used to obtain the mechanical and molecular structure parameters of the coal samples. The results showed that the elastic modulus of vitrinite ranged from 0.66 GPa to 7.58 GPa, and the elastic modulus increased with the increase of the maximum reflectance Ro of vitrinite. It is shown that with the increase of Ro, the Raman structure parameters change regularly. The relationship between elastic modulus E and Raman structural parameters was established. It was found that the peak difference(G-D) and the relative content of PAHs were positively correlated with the induced elastic modulus. There is a negative correlation between FWHM-G and E, which reflects that the increase of structural order will lead to the increase of elastic modulus, indicating that with the increase of maturity, the structure of macromolecules will be closely arranged and the intermolecular force will increase, leading to the increase of elastic modulus.
    • [1] SONG Honghua, JIANG Yaodong, Elsworth Derek, et al. Scale effects and strength anisotropy in coal[J]. International Journal of Coal Geology, 2018, 195: 37-46.
      [2] SAMPATH KHS M, PERERA MS A, Ranjith PG, et al. CO2 interaction induced mechanical characteristics alterations in coal: A review[J]. International Journal of Coal Geology, 2019, 204: 113-129.
      [3] BARAN Pawel, Zar■bska Katarzyna, Nodzeński Adam. Energy aspects of CO2 sorption in the context of sequestration in coal deposits[J]. Journal of Earth Science, 2014, 25(4): 719-726.
      [4] PAN Zhejun, CONNELL Luke D. A theoretical model for gas adsorption-induced coal swelling[J]. International Journal of Coal Geology, 2007, 69(4): 243-252.
      [5] ZHANG Yihuai, LEBEDEV Maxim, SAMADIVALEH Mohammad, et al. Swelling induced changes in coal microstructure due to supercritical CO2 injection[J]. Geophysical Research Letters, 2016, 43(17): 9077.
      [6] ZHANG Yihuai, LEBEDEV Maxim, SAMADIVALEH Mohammad, et al. Swelling effect on coal micro structure and associated permeability reduction[J]. Fuel, 2016, 82: 568-576.
      [7] ZHANG Yihuai, ZHANG Zike, SARMADIVALEH Mohammad, et al. Micro-scale fracturing mechanisms in coal induced by adsorption of supercritical CO2[J]. International Journal of Coal Geology, 2017, 175: 40-50.
      [8] LIU Yulong, TANG Dazhen, XU Hao, et al. The impact of coal macrolithotype on hydraulic fracture initiation and propagation in coal seams[J]. Journal of Natural Gas Science and Engineering, 2018, 56: 299-314.
      [9] 吕帅锋,王生维,刘洪太,等.煤储层天然裂隙系统对水力压裂裂缝扩展形态的影响分析[J].煤炭学报,2020,45(7):2590-2601.

      LYU Shuaifeng, WANG Shengwei, LIU Hongtai, et a1. Analysis of the influence of natural fracture system on hydraulic fracture propagation morphology in coal reservoir[J]. Journal of China Coal Society, 2020, 45(7): 2590-2601.

      [10] 陶云奇,许江,程明俊,等.含瓦斯煤渗透率理论分析与试验研究[J].岩石力学与工程学报,2009,28(S2):3364-3370.

      TAO Yunqi, XU Jiang, CHENG Mingjun, et al. Theoretical analysis and experimental study on permeability of gas-bearing coal[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 3363-3370.

      [11] 杨天鸿,陈仕阔,朱万成,等.煤层瓦斯卸压抽放动态过程的气-固耦合模型研究[J].岩土力学,2010,31(7):2247-2252.

      YANG Tianhong, CHEN Shikuo, ZHU Wancheng, et al. Coupled model of gas flow-solid distortion in coal seams based on dynamic process of pressure relief and gas drainage[J]. Rock and Soil Mechanics, 2010, 31(7): 2247-2252.

      [12] 苏承东,唐旭,倪小明.煤样抗压、拉强度与点荷载指标关系的试验研究[J].采矿与安全工程学报,2012, 29(4):511-515.

      SU Chengdong, TANG Xu, NI Xiaoming. Study on correlation among point load strength, compression and tensile strength of coal samples[J]. Journal of Mining & Safety Engineering, 2012, 29(4): 511-515.

      [13] 夏开文,余裕超,王帅,等.岩石动态巴西圆盘实验中的过载现象[J].爆炸与冲击,2021,41(4):1-12.

      XIA Kaiwen, YU Yuchao, WANG Shuai, et al. On the overload phenomenon in dynamic Brazilian disk experiments of rocks[J]. Explosion and Shock Waves, 2021, 41(4): 51-62.

      [14] 杨秀娟,张敏,闫相祯.基于声波测井信息的岩石弹性力学参数研究[J].石油地质与工程,2008,22(4):39-42.

      YANG Xiujuan, ZHANG Min, YAN Xiangzhen. Study on acoustic logging-based rock elasticity parameters[J]. Petroleum Geology and Engineering, 2008, 22(4): 39-42.

      [15] ELIYAHU Moshe, EMMANUEL Simon, Day-Stirrat Ruarri J, et al. Mechanical properties of organic matter in shales mapped at the nanometer scale[J]. Marine and Petroleum Geology, 2015, 59: 294-304.
      [16] 杨江浩,李勇,吴翔,等.基于原子力显微镜的煤岩微尺度力学性质研究[J].煤炭科学技术,2019,47(9):144-151.

      YANG Jianghao, LI Yong, WU Xiang, et a1. Study on micro-scale mechanical properties of coal rock based on atomic force microscopy[J]. Coal Science and Technology, 2019, 47(9): 144-151.

      [17] LIU Yuke, XIONG Yongqiang, LI Yun, et al. Effect of thermal maturation on chemical structure and nanomechanical properties of solid bitumen[J]. Marine and Petroleum Geology, 2018, 92: 780-793.
      [18] LI Chunxiao, OSTADHASSAN Mehdi, KONG Lingyun. Nanochemo-mechanical Characterization of Organic Shale Through AFM and EDS, SEG Technical Program Expanded Abstracts[R]. Tulsa: Society of Exploration Geophysicists, 2017: 3837-3840.
      [19] WANG Anmin, CAO Daiyong, WEI Yingchun, et al. Macromolecular structure controlling micro mechanical properties of vitrinite and inertinite in taihangshan fault zone(North China)[J]. Energies, 2020, 13: 6618.
      [20] EMMANUEL S, ELIYAHU M, DAY-STIRRAT R, et al. Impact of thermal maturation on nano-scale elastic properties of organic matter in shales[J]. Marine and Petroleum Geology, 2016, 70: 175-184.
      [21] KHATIBI S, OSTADHASSANA M, TUSCHEL D, et al. Raman spectroscopy to study thermal maturity and elastic modulus of kerogen[J]. International Journal of Coal Geology, 2018, 185: 103-118.
      [22] LI Chunxiao, OSTADHASSANA M, Gentzis T, et al. Nanomechanical characterization of organic matter in the Bakken formation by microscopy-based method[J]. Marine and Petroleum Geology, 2018b, 96: 128-138.
      [23] Yu Hongyan, Zhang Yihuai, Lebedev M, et al. Nanos-cale geomechanical properties of Western Australian coal[J]. Journal of Petroleum Science and Engineering, 2018, 162: 736-746.
      [24] 张小梅,王绍清,陈昊,等.基于原子力显微镜观测的煤中显微组分微观形貌与孔隙结构[J/OL].煤炭科学技术,2021. https://kns.cnki.net/kcms/detail/11.2402.TD.20210927.2238.002.html.

      ZHANG Xiaomei, WANG Shaoqing, CHEN Hao, et al. Micro morphology and pore structure of macerals in coal observed by atomic force microscopy (AFM)[J]. Coal Science and Technology, 2021. https://kns.cnki.net/kcms/detail/11.2402.TD.20210927.2238.002.html

      [25] 高飞,邓存宝,王雪峰,等.煤的化学结构及仪器分析方法[J].辽宁工程技术大学学报(自然科学版),2012,31(5):721-723.

      GAO Fei, DENG Cunbao, WANG Xuefeng, et al. Coal chemical structure and its instrumental analysis method[J]. Journal of Liaoning Technical University(Natural Science), 2012, 31(5): 721-723.

      [26] 苏现波,司青,宋金星.煤的拉曼光谱特征[J].煤炭学报,2016,4l(5):1197-1202.

      SU Xianbo, SI Qing, SONG Jinxing. Characteristics of coal Raman spectrum[J]. Joumal of China Coal Society, 2016, 4l(5): 1197-1202.

      [27] 唐旭.煤岩的纳微力学特性研究:以Pocahontas煤岩为例[J].煤炭科学技术,2020,48(2):220-229.

      TANG Xu. Nanomechanics of coal: a case study of Pocahontas coal[J]. Coal Science and Technology, 2020, 48(2): 220-229.

      [28] 李霞,曾凡桂,王威,等.低中煤级煤结构演化的拉曼光谱表征[J].煤炭学报,2016,41(9):2298-2304.

      LI Xia, ZENG Fangui, WANG Wei, et al. Raman characterization of structural evolution in the low-middle rank coals[J]. Journal of China Coal Society, 2016, 41(9): 2298-2304.

      [29] Li Xiaojiang, Jun-ichiro Hayashi. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85, 1700-1707.
      [30] SAUERER Bastain, STUKAN Mikhail, ABDALLAH Wael, et a1. Quantifying mineral surface energy by scanning force microscopy[J]. Journal of Colloid and Interface Science, 2016, 472: 237-246.
      [31] Das TK. Evolution characteristics of gases during pyrolysis of maceral concentrates of Russian coking coals[J]. Fuel, 2001, 80(4): 489-500.
      [32] Cuesta A, Dhamelincourt P, Laureyns J, et al. Raman microprobes studies on carbon material[J]. Carbon, 1994, 32(8): 1523-1532.
      [33] Tamor MA, Vassel W C. Raman“fingerprinting”of amorphous carbon films[J]. Journal of Applied Physics, 1994, 76(6): 3823-3830.
      [34] WANG W, THOMAS KM, POULTNEY RM, et al. Iron catalysed graphitization in the blast furnace[J]. Carbon, 1995, 33(11): 1525-1535.
    计量
    • 文章访问数:  21
    • HTML全文浏览量:  0
    • PDF下载量:  10
    • 被引次数: 0
    出版历程
    • 发布日期:  2022-11-19

    目录

      /

      返回文章
      返回