• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

基于表面力测量的煤尘润湿剂与煤相互作用研究

陈曦, 张志强, 李仲文, 邬丛珊

陈曦, 张志强, 李仲文, 邬丛珊. 基于表面力测量的煤尘润湿剂与煤相互作用研究[J]. 煤矿安全, 2022, 53(10): 147-151.
引用本文: 陈曦, 张志强, 李仲文, 邬丛珊. 基于表面力测量的煤尘润湿剂与煤相互作用研究[J]. 煤矿安全, 2022, 53(10): 147-151.
CHEN Xi, ZHANG Zhiqiang, LI Zhongwen, WU Congshan. Study on interaction between coal dust wetting agent and coal based on surface force measurement[J]. Safety in Coal Mines, 2022, 53(10): 147-151.
Citation: CHEN Xi, ZHANG Zhiqiang, LI Zhongwen, WU Congshan. Study on interaction between coal dust wetting agent and coal based on surface force measurement[J]. Safety in Coal Mines, 2022, 53(10): 147-151.

基于表面力测量的煤尘润湿剂与煤相互作用研究

Study on interaction between coal dust wetting agent and coal based on surface force measurement

  • 摘要: 采用压电陶瓷双晶悬臂梁力学测量装置,测量表面活性剂溶液液滴与煤之间的相互作用力,表征液滴润湿煤块的难易程度,研究了表面活性剂溶液浓度和表面活性剂类型对相互作用力的影响。结果表明:在量浓度为5×10-5、8×10-5、1.5×10-4 mol/L的表面活性剂脂肪醇聚氧乙烯醚(9)(AEO9)溶液中,量浓度为1.5×10-4 mol/L的溶液液滴所受的最大斥力最小,到达最大斥力所用的时间最短,润湿能力最强;在量浓度均为1.5×10-4 mol/L的3种同源的脂肪醇聚氧乙烯醚试剂AEO7、AEO9、AEO12溶液中,AEO9溶液所受的最大斥力最小,且到达最大斥力所用时间最短,说明其润湿能力最强。
    Abstract: In this study, the interaction force between surfactant solution droplets and coal is measured by the mechanical testing device of piezoelectric ceramic double crystal cantilever beam, and the difficulty degree of the droplets wetting coal is characterized. The effects of the concentration of surfactant solution and the type of surfactant on the interaction force were studied. The results showed that in the solution of surfactant fatty alcohol polyoxyethylene ether(9) (AE09) with the concentration of 5×10-5 mol/L, 8×10-5 mol/L and 1.5×10-4mol/L, the solution with the concentration of 1.5×10-4 mol/L had the lowest maximum repulsive force and the shortest time to reach the maximum repulsive force, so its wetting ability was the strongest. In the solution of three homologous series of nonionic surfactants of polyoxyethylenated fatty alcs(AE07, AE09 and AE012) with the concentration of 1.5×10-4 mol/L, the maximum repulsive force of AE09 solution was the least, and the time to reach the maximum repulsive force was also the shortest, indicating that it had the strongest wetting ability.
  • [1] 徐娇,王海婷,马咸,等.利用单颗粒气溶胶质谱仪研究燃煤尘质谱特征[J].环境科学学报,2019,39(1):25-34.

    XU Jiao, WANG Haiting, MA Xian, et al. Study on the source spectral characteristics of particles emitted from coal combustion by SPAMS[J]. Acta Scientiae Circumstantiae, 2019, 39(1): 25-34.

    [2] 周刚,程卫民,徐翠翠,等.不同变质程度煤尘润湿性差异的13C-NMR特征解析[J].煤炭学报,2015,40(12):2849-2855.

    ZHOU Gang, CHENG Weimin, XU Cuicui, et al. Characteristic analysis of 13C-NMR for the wettability difference of coal dust with diverse degrees of metamorphism[J]. Journal of China Coal Society, 2015, 40(12): 2849-2855.

    [3] 王雪涛,张鸽.不同煤种呼吸性粉尘与尘肺病患病风险的剂量-反应关系分析[J].中华流行病学杂志,2020, 41(7):1068-1071.

    WANG Xuetao, ZHANG Ge. Dose-response relationship between different respirable coal dust exposures and pneumoconiosis risk[J]. Chinese Journal of Epidemiology, 2020, 41(7): 1068-1071.

    [4] 宫婕,聂百胜,樊堉,等.水平管道内褐煤煤尘爆炸传播特性[J].兵工学报,2020,41(S2):156.

    GONG Jie, NIE Baisheng, FAN Yu, et al. Explosion propagation characteristics of lignite in horizontal pipeline[J]. Acta Armamentarii, 2020, 41(S2): 156.

    [5] 景国勋,彭乐,班涛.煤质指标对煤尘爆炸最大压力上升速率的影响[J].煤矿安全,2020,51(1):42-46.

    JING Guoxun, PENG Le, BAN Tao. Influence of coal quality index on maximum pressure rise rate in coal dust explosion[J]. Safety in Coal Mines, 2020, 51(1): 42-46.

    [6] 牟国礼,郭英俊,李强,等.付村煤矿综掘通风除尘参数优化及风流-粉尘运移规律研究[J].中国煤炭,2020,46(6):63-68.

    MU Guoli, GUO Yingjun, LI Qiang, et al. Research on optimization of ventilation parameters for dust removal and airflow-dust migrationlaw in fully mechanized heading face of Fucun Coal Mine[J]. China Coal, 2020, 46(6): 63-68.

    [7] 高梦翔,姚鑫,朱勇,等.双区静电除尘器的数值模拟研究[J].中国环境科学,2018,38(10):3698-3703.

    GAO Mengxiang, YAO Xin, ZHU Yong, et al. Numerical simulation study of two-stage electrostatic precipitator[J]. China Environmental Science, 2018, 38(10): 3698-3703.

    [8] 叶兴联,王帅,张浩,等.湿式静电除尘器流场的过程模拟及优化[J].中南大学学报,2020,27(1):132.

    YE Xinglian, WANG Shuai, ZHANG Hao, et al. Process simulation and optimization of flow field in wet electrostatic precipitator[J]. Journal of Central South University, 2020, 27(1): 132.

    [9] 王欣,董长松,宋斌,等.天台山隧道喷雾降尘雾化性能研究[J].现代隧道技术,2019,56(S2):138-142.

    WANG Xin, DONG Changsong, SONG Bin, et al. Study on the atomization performance of tiantaishan tunnel spray dust reduction[J]. Modern Tunnelling Technology, 2019, 56(S2): 138-142.

    [10] 荆德吉,马明星,葛少成,等.皮带转载系统气动喷雾降尘数值模拟及试验研究[J].安全与环境学报,2020,20(6):2166-2172.

    JING Deji, MA Mingxing, GE Shaocheng, et al. Numerical simulation and an experimental test for the pneumatic spray dust reduction of the belt transshipment system[J]. Journal of Safety and Environment, 2020, 20(6): 2166-2172.

    [11] 赵璐,张蕾,文欣,等.表面活性剂润湿低阶煤煤尘的性能及作用机理[J].西安科技大学学报,2021,41(2):323-330.

    ZHAO Lu, ZHANG Lei, WEN Xin, et al. Wetting ability of surfactants on low-rank coal and wetting mechanism[J]. Journal of Xi’an University of Science and Technology, 2021, 41(2): 323-330.

    [12] 齐健,闫奋飞,王怀法.不同煤种接触角及润湿性规律探究[J].矿产综合利用,2018(2):112-117.

    QI Jian, YAN Fenfei, WANG Huaifa. Study on contact angle and wetting property of different coal[J]. Multipurpose Utilization of Mineral Resources, 2018(2): 112-117.

    [13] 姜万录,雷亚飞,代皓东,等.湿度修正的光散射法在现场粉尘监测中的应用[J].仪器仪表学报,2018,39(1):200-207.

    JIANG Wanlu, LEI Yafei, DAI Haodong, et al. Humidity modified light scattering method applied in field dust monitoring[J]. Chinese Journal of Scientific Instrument, 2018, 39(1): 200-207.

    [14] Ma Y, Sun J, Ding J, et al. Synthesis and characterization of a penetrating and pre-wetting agent for coal seam water injection[J]. Powder Technology, 2020, 380: 368-376.
    [15] Wang L, Sharp D, Masliyah J H, et al. Measurement of interactions between solid particles, liquid droplets, and/or gas bubbles in a liquid using an integrated thin film drainage apparatus[J]. Langmuir, 2013, 29(11): 3594-3603.
    [16] Zhang X, Tchoukov P, Manica R, et al. Simultaneous measurement of dynamic force and spatial thin film thickness between deformable and solid surfaces by integrated thin liquid film force apparatus[J]. Soft Matter, 2016, 12(44): 9105-9114.
  • 期刊类型引用(2)

    1. 高广义. 基于MICP的固化粉尘微生物抑尘剂试验研究. 煤矿安全. 2024(03): 91-98 . 本站查看
    2. 寇德瑞. 表面活性剂的苯环结构对煤尘润湿性的影响机制. 矿业研究与开发. 2024(09): 143-150 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  21
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 3
出版历程
  • 发布日期:  2022-10-19

目录

    /

    返回文章
    返回