电阻率法测试煤体中水分运移距离的可行性探析
Feasibility of measuring water transport distance in coal by resistivity method
-
摘要: 为了定量测试水分在煤体内的运移距离,开发了电阻率测试技术并探讨了其可行性。研究结果表明:采用分层布置电极的方法与显色指示剂法所测试的水分运移距离均随时间的增加而增加;随着时间的增加,煤样电阻率的变化分为突变过程、快变过程、渐变过程,电阻率法与显色指示剂法所测试的运移距离基本一致,相对误差在-4.2%~5.8%之间;可采用布置梳状电极、布置分层电极、一端竖向打孔布置测试电极的方法分别对无加载围压柱状样品、加载轴压/周围被约束样品及加载轴压/围压样品进行运移距离测试。Abstract: To quantitatively test the migration distance of water in coal, this paper develops the resistivity measurement technology and discusses its feasibility. The results show that the water transport distance measured by layered electrode arrangement method and color indicator method increase with the increase of time. With the increase of migration time, the change of coal sample resistivity can be divided into three change processes, which are sudden change process, rapid change process and gradual change process. The migration distance measured by resistivity method and color indicator method are basically the same, and the relative error is between -4.2% and 5.8%. The methods of arranging comb electrodes, arranging layered electrodes and arranging test electrodes with vertical holes at one end can be used to test the migration distance of unloaded confining pressure cylindrical samples, loaded axial pressure/surrounding constrained samples and loaded axial pressure/confining pressure samples, respectively.
-
-
[1] 李伟,王亚会,陈肖,等.不同提液方式对强水驱海相砂岩油藏驱油效率影响的实验研究[J].地质科技通报,2021,40(5):301-306. LI Wei, WANG Yahui, CHEN Xiao, et al. Experimental study on the effect of different liquid extraction methods on the oil displacement efficiency of strong water flooding marine sandstone reservoirs[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 301-306.
[2] ZHANG Kaixuan, ZHANG Jian, WEI Jianping, et al. Coal seam water infusion for dust control: a technical review[J]. Environmental Science and Pollution Research, 2019, 26: 4537-4554. [3] 吴军虎,李玉晨,邵凡凡,等.生化黄腐酸对土壤物理性质及水分运动特性的影响[J].水土保持学报,2021,35(4): 159-164. WU Junhu, LI Yuchen, SHAO Fanfan, et al. Effects of biochemical fulvic acid on physical properties and water movement characteristics[J]. Journal of Soil and Water Conservation, 2021, 35(4): 159-164.
[4] 席本野,邸楠,曹治国,等.树木吸收利用深层土壤水的特征与机制:对人工林培育的启示[J].植物生态学报,2018,42(9):885-905. XI Benye, DI Nan, CAO Zhiguo, et al. Characteristics and underlying mechanisms of plant deep soil water uptake and utilization: Implication for the cultivation of plantation trees[J]. Chinese Journal of Plant Ecology, 2018, 42(9): 885-905.
[5] 董家昕,肖知国,戚灵灵.煤层注水防治瓦斯的临界注水量确定方法[J].安全与环境学报,2018,18(6):2183-2189. DONG Jiaxin, XIAO Zhiguo, QI Lingling. An approach to determining the critical water-injecting volume to the coal seam to prevent gas outburst[J]. Journal of Safety and Environment, 2018, 18(6): 2183-2189.
[6] 翁安琦,袁树杰,王晓楠,等.煤层注水降尘中表面活性剂复配应用研究[J].中国安全科学学报,2020,30(10):90-95. WENG Anqi, YUAN Shujie, WANG Xiaonan, et al. Study on application of surfactant compound in coal seam water injection for dust reduction[J]. China Safety Science Journal, 2020, 30(10): 90-95.
[7] 徐连满,路凯旋.复合湿润剂对煤体渗透性及冲击倾向性影响的试验研究[J].安全与环境学报,2020,20(3):920-924. XU Lianman, LU Kaixuan. Experimental tracing and determination of the impact of the composite wetting agent on the coal permeability and tendency[J]. Journal of Safety and Environment, 2020, 20(3): 920-924.
[8] 岳基伟,王兆丰.不含瓦斯重塑煤体的渗吸特性[J].煤炭学报,2017,42(S2):377-384. YUE Jiwei,WANG Zhaofeng. Imbibition characteristics of remolded coal without gas[J]. Journal of China Coal Society,2017,42(S2): 377-384.
[9] 王文涛,张鹏,高凯凯,等.电容层析成像技术及其在水泥基材料领域的应用[J].硅酸盐通报,2020,39(7):2042-2051. WANG Wentao, ZHANG Peng, GAO Kaikai, et al. Electrical capacitance tomography and its application in the field of cement-based materials[J]. Bulletin of the Science Chinese Ceramic Society, 2020, 39(7): 2042.
[10] Florentine J S Nieuwmeyer, Michiel Damen, Ad Gerich, et al. Granule characterization during fluid bed drying by development of a near infrared method to determine water content and median granule size[J]. Pharmaceutical Research, 2007, 24(10): 1854. [11] 周新奇,杨伟伟,房兆华,等.基于近红外光谱技术与BP-ANN算法的豆粕品质快速检测[J].粮油食品科技,2012,20(2):27-30. ZHOU Xinqi, YANG Weiwei, FANG Zhaohua, et al. Rapid determination of soybean meal quality based on near infrared spectroscopy coupled with BP-ANN[J]. Science and Technology of Cereals, Oils and Foods, 2012, 20(2): 27-30.
[12] QUENARD D, SALLE H. A gammaray spectrometer for measurement of the water diffusivity of cementitious materials[J]. Materials Research Society, 1989, 137:165-169. [13] HAN■I■ L, Ilic'ab R. Relationship between liquid sorptivity and capillarity in concrete[J]. Cement and Concrete Research, 2003, 33(9):1385-1388. [14] 张鹏,赵铁军,Wittmana Folker H,等.基于中子成像的水泥基材料毛细吸水动力学研究[J].水利学报,2011,42(1):81-87. ZHANG Peng, ZHAO Tiejun, Wittmann Folker H, et al. Water capillary suction dynamics of cement-based materials based on neutron radiography method[J]. Journal of Hydraulic Engineering, 2011, 42(1): 81-87.
[15] 王彬,王兆丰,岳基伟,等.NMR成像技术测试煤样渗吸过程中水分变化规律研究[J].中国安全生产科学技术,2018,14(10):32-38. WANG Bin, WANG Zhaofeng, YUE Jiwei, et al. Study on change laws of moisture during imbibition process of coal samples tested by NMR imaging technology[J]. Journal of Safety Science and Technology, 2018, 14(10): 32-38.
[16] GUO R, MANNHARDT K, KANTZAS A. Characterizing moisture and gas content of coal by low-field characterizing moisture and gas content of coal by low-field NMR[J]. Petroleum Society of Canada, 2007, 46(10): 49-54. [17] YAO Yanbin, LIU Dameng, CHE Yao, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)[J]. Fuel, 2010, 89(7): 1371. [18] 徐祖新,郭少斌.基于NMR和X-CT的页岩储层孔隙结构研究[J].地球科学进展,2014,29(5):624. XU Zuxin, GUO Shaobin. Application of NMR and X-CT technology in the pore structure study of shale gas reservoirs[J]. Advances in Earth Science, 2014, 29(5): 624-631.
[19] 岳基伟,王兆丰,陈金生,等.用水敏指示剂快速测定重塑煤体渗吸高度的研究[J].中国安全科学学报,2017,27(11):126-131. YUE Jiwei, WANG Zhaofeng, CHEN Jinsheng, et al. Study on rapid determination of imbibition height of remolded coal by water sensitive indicator[J]. China Safety Science Journal, 2017, 27(11): 126-131.
[20] 王彬.不含瓦斯煤渗吸电阻率对含水率的响应特性研究[D].焦作:河南理工大学,2019. [21] 赵晨光,雷东记,张玉贵.含水煤层复电阻正交裂隙阻容模型[J].煤炭学报,2020,45(10):3541-3547. ZHAO Chenguang, LEI Dongji, ZHANG Yugui. Orthogonal fracture resistance-capacitance model of complex resistance of containing water coal seam[J]. Journal of China Coal Society, 2020, 45(10): 3541-3547.
计量
- 文章访问数: 21
- HTML全文浏览量: 0
- PDF下载量: 9