• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

基于红外测温技术的高温热源定位实验研究

常清洋, 郭立稳, 武建国, 庞凤岭

常清洋, 郭立稳, 武建国, 庞凤岭. 基于红外测温技术的高温热源定位实验研究[J]. 煤矿安全, 2022, 53(9): 100-105.
引用本文: 常清洋, 郭立稳, 武建国, 庞凤岭. 基于红外测温技术的高温热源定位实验研究[J]. 煤矿安全, 2022, 53(9): 100-105.
CHANG Qingyang, GUO Liwen, WU Jianguo, PANG Fengling. Experimental study on high temperature heat source positioning based on infrared temperature measurement technology[J]. Safety in Coal Mines, 2022, 53(9): 100-105.
Citation: CHANG Qingyang, GUO Liwen, WU Jianguo, PANG Fengling. Experimental study on high temperature heat source positioning based on infrared temperature measurement technology[J]. Safety in Coal Mines, 2022, 53(9): 100-105.

基于红外测温技术的高温热源定位实验研究

Experimental study on high temperature heat source positioning based on infrared temperature measurement technology

  • 摘要: 针对采空区热源温度实时监测、高温点准确定位的难题,利用非接触式红外测温装置研究了采空区模型中高温热源的温度变化规律;分析了热源温度、升温时间、传感器测定温度和测温距离的关系,推导了理想条件下热源定位方程;基于热源温度变化速率的热源温度-时间分段拟合模型和传感器实测温度迭代补偿模型修正了数据的拟合误差和装置的系统误差。结果表明:热源温度随升温时间呈二次函数变化,热源升温速率呈先增大后减小的趋势;传感器测定温度与热源温度成正比,传感器温度接收率与测温距离成反比;修正后的热源温度最大相对误差为0.48%,测温距离平均绝对误差为0.1 m。
    Abstract: Aiming at the problems of real-time monitoring of the temperature of the heat source in the goaf and accurate positioning of the high-temperature point, the temperature variation law of the high-temperature heat source in the goaf model is studied by using the non-contact infrared temperature measuring device. The relationship between heat source temperature, heating time, temperature measured by sensor and temperature measurement distance is analyzed, and the equation of heat source location under ideal conditions is deduced. Based on the heat source temperature change rate, the heat source temperature time piecewise fitting model and the sensor measured temperature iterative compensation model correct the fitting error of the data and the systematic error of the device. The results show that the temperature of the heat source changes as a quadratic function with the heating time, and the heating rate of the heat source increases first and then decreases; the temperature measured by the sensor is directly proportional to the temperature of the heat source, and the temperature receiving rate of the sensor is inversely proportional to the temperature measurement distance; the maximum relative error of the corrected heat source temperature is 0.48%, and the average absolute error of the temperature measurement distance is 0.1 m.
  • [1] 周斌,周文强,董智宇,等.氧化升温过程中煤岩介质体氡析出特性实验研究[J].煤炭学报,2020,45(S2):859-866.

    ZHOU Bin, ZHOU Wenqiang, DONG Zhiyu, et al. Experimental study on radon exhalation characteristics of coal and rock during oxidation and heating[J]. Journal of China Coal Society, 2020, 45(S2): 859-866.

    [2] 谢俊文,卢熹,上官科峰,等.分布式光纤测温技术在大倾角易燃煤层采空区自燃监测中的应用[J].煤矿安全,2014,45(11):118-121.

    XIE Junwen, LU Xi, SHANGGUAN Kefeng, et al. Application of distributed optical fiber temperature detection technology in spontaneous combustion monitoring of large angle flammable coal seam goaf[J]. Safety in Coal Mines, 2014, 45(11): 118-121.

    [3] 张建业,陈举师,孙新.漏风测定和煤温监测防治采空区煤炭自燃技术[J].矿业安全与环保,2016,43(3):60-63.

    ZHANG Jianye, CHEN Jushi, SUN Xin. Control technology for coal spontaneous combustion in gobs based on air leakage determination and coal temperature monitoring[J]. Mining Safety and Environmental Protection, 2016, 43(3): 60-63.

    [4] 李锋,罗伙根,王超.采空区埋管抽采下自燃“三带”分布规律研究[J].煤矿安全,2020,51(2):169-173.

    LI Feng, LUO Huogen, WANG Chao. Study on distribution law of spontaneous combustion “three belts” in goaf with buried pipe extraction[J]. Safety in Coal Mines, 2020, 51(2): 169-173.

    [5] 曹文辉,王飞.基于光纤测温技术判定采空区自燃危险区域的研究[J].矿业安全与环保,2020,47(6):75.

    CAO Wenhui, WANG Fei. Study on the identification of spontaneous combustion hazard area in goaf based on optical fiber temperature measurement technology[J]. Mining Safety and Environmental Protection, 2020, 47(6): 75.

    [6] 刘振岭,郑忠亚.采空区煤体自燃温度场演变模拟试验研究[J].煤炭科学技术,2020,48(8):114-120.

    LIU Zhenling, ZHENG Zhongya. Simulation test study on temperature field evolution of coal spontaneous combustion in gob[J]. Coal Science and Technology, 2020, 48(8): 114-120.

    [7] 高玉坤,田园,黄志安,等.采空区温度场相似模拟实验台的研制与应用[J].矿业研究与开发,2022,42(2):139-143.

    GAO Yukun, TIAN Yuan, HUANG Zhian, et al. Development and application of similarity test bench of temperature field in goaf[J]. Mining Research and Development, 2022, 42(2): 139-143.

    [8] 丁鹏翔.采空区隐蔽热源的气热场特性研究[D].徐州:中国矿业大学,2020.
    [9] 高东,郭立稳,王福生,等.采空区自燃危险区域数值模拟[J].中国科技论文,2022,17(1):78-84.

    GAO Dong, GUO Liwen, WANG Fusheng, et al. Spontaneous combustion hazard area in goaf based on numerical simulation[J]. China Sciencepaper, 2022, 17(1): 78-84.

    [10] 曹健.基于光纤测温技术的蒙西地区侏罗纪煤层采空区火区探测研究[D].廊坊:华北科技学院,2017.
    [11] 郑园,赵华玮,苗可彬.分布式光纤测温系统在采空区火灾监控预警中的应用[J].煤炭技术,2014,33(9):291-293.

    ZHENG Yuan, ZHAO Huawei, MIAO Kebin. Application of distributed optical fiber temperature measurement system in goaf fire early warning[J]. Coal Technology, 2014, 33(9): 291-293.

    [12] 程根银,唐晶晶,曹健,等.基于光纤测温系统的矿井采空区“三带”研究[J].中国煤炭,2016,42(12):107-110.

    CHENG Genyin, TANG Jingjing, CAO Jian, et al. Research on “three zone” of goaf based on optical fiber temperature measurement system[J]. China Coal, 2016, 42(12): 107-110.

    [13] 陈清华,张国枢,戴广龙,等.松散煤体温度场试验研究[J].安全与环境学报,2010,10(6):180-183.

    CHEN Qinghua, ZHANG Guoshu, DAI Guanglong, et al. Investigative experiment on the loose coal heating field[J]. Journal of Safety and Environment, 2010, 10(6): 180-183.

    [14] 杨永辰,米万升,曹少方,等.基于红外探测技术的巷道火源预测预报模拟研究[J].煤炭技术,2018,37(12):124-126.

    YANG Yongzhen, MI Wansheng, CAO Shaofang, et al. Simulation research on prediction of roadway fire source based on infrared detection technology[J]. Coal Technology, 2018, 37(12): 124-126.

    [15] 杜玉玺,胡振琪,葛运航,等.距离对不同强度热源红外测温影响及补偿[J].红外技术,2019,41(10):976-981.

    DU Yuxi, HU Zhenqi, GE Yunhang, et al. Distance influence and compensation of infrared temperature measurement with different intensity heat sources[J]. Infrared Technology, 2019, 41(10): 976-981.

    [16] 沈亚楠,张嘉勇.采空区热源温度红外测定试验研究[J].矿业安全与环保,2022,49(1):42-46.

    SHEN Yanan, ZHANG Jiayong. Experimental study on infrared measurement of heat source temperature in goaf[J]. Mining Safety and Environmental Protection, 2022, 49(1): 42-46.

    [17] 郭军,李帅,蔡国斌,等.采空区隐蔽火源探测及声学法煤温感知新技术探讨[J].中国安全生产科学技术,2021,17(6):5-11.

    GUO Jun, LI Shuai, CAI Guobin, et al. Discussion on new technologies of hidden fire source detection and coal temperature sensing by acoustic method for goal[J]. Journal of Safety Science and Technology, 2021, 17(6): 5-11.

    [18] 乔雨,杨宁,谭鹏,等.大体积混凝土红外测温影响因素研究与工程应用[J].清华大学学报(自然科学版),2021,61(7):730-737.

    QIAO Yu, YANG Ning, TAN Peng, et al. Engineering application and factors affecting infrared temperature measurements of mass concrete surfaces[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 730-737.

    [19] 魏绍亮,王敬山,韩连伟,等.补偿强反光体表面红外测温误差的算法研究[J].激光与红外,2019,49(2):187-193.

    WEI Shaoliang, WANG Jingshan, HAN Lianwei, et al. Algorithm of compensation infrared temperature measurement error on strong reflector[J]. Laser and Infrared, 2019, 49(2): 187-193.

  • 期刊类型引用(3)

    1. 李鹏. 基于红外测温技术的农村配网设备运行监测研究. 中国新技术新产品. 2025(03): 127-129 . 百度学术
    2. 黄鼎键,杨华山,江灏,钟勇,林铭昊. 基于激光雷达和温度传感的高温避障. 福建工程学院学报. 2023(03): 244-248 . 百度学术
    3. 张缘圆,辛明勇,冯起辉,祝健杨. 基于多传感器融合的微型智能综合体研究. 电力大数据. 2023(03): 69-76 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  75
  • HTML全文浏览量:  0
  • PDF下载量:  12
  • 被引次数: 7
出版历程
  • 发布日期:  2022-09-19

目录

    /

    返回文章
    返回