• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

深部巷道应变型冲击地压能量模型及近场围岩供能规律研究

赵同彬,姚金鹏,郭 磊,郭伟耀,张玉宝

赵同彬,姚金鹏,郭 磊,郭伟耀,张玉宝. 深部巷道应变型冲击地压能量模型及近场围岩供能规律研究[J]. 煤矿安全, 2023, 54(7): 34-40.
引用本文: 赵同彬,姚金鹏,郭 磊,郭伟耀,张玉宝. 深部巷道应变型冲击地压能量模型及近场围岩供能规律研究[J]. 煤矿安全, 2023, 54(7): 34-40.
ZHAO Tongbin. Research on energy model of rock burst under strain in deep roadway and energy supply law of near-field surrounding rock[J]. Safety in Coal Mines, 2023, 54(7): 34-40.
Citation: ZHAO Tongbin. Research on energy model of rock burst under strain in deep roadway and energy supply law of near-field surrounding rock[J]. Safety in Coal Mines, 2023, 54(7): 34-40.

深部巷道应变型冲击地压能量模型及近场围岩供能规律研究

Research on energy model of rock burst under strain in deep roadway and energy supply law of near-field surrounding rock

  • 摘要: 近场围岩弹性变形能的积聚及突然释放是深部巷道应变型冲击地压发生的本质。为了进一步认识近场围岩能量对冲击地压灾害的作用机理,采用理论分析和数值模拟相结合的方法,建立应变型冲击地压“供能体-冲击体”模型,提出应变型冲击地压发生的能量分阶段作用过程,揭示了不同因素下应变型冲击地压能量源对冲击体的供能规律。结果表明:应变型冲击地压发生过程中,供能体能量占近场围岩系统总能比例与供能体-冲击体刚度比呈负相关;顶底板弹性模量越高,深部煤体供能占比越高,顶底板供能占比越低;冲击深度越大,对应深部煤体供能占比越低,顶底板供能占比越高;在顶底板岩层较硬的条件下,应变型冲击地压的防治在于降低深部煤体储能,减小深部煤体供能;在顶底板岩层较软条件下,应变型冲击地压的防治应加强顶板支护与底板卸压,减小顶底板供能;顶底板岩层是强应变型冲击地压的主要能量源,深部煤体能量对弱应变型冲击起到主导作用。
    Abstract: The accumulation and sudden release of elastic energy of near-field surrounding rock is the essence of strain-type rock burst in deep roadway. In order to further understand the mechanism of near-field surrounding rock energy on rock burst disasters, a strain-type rock burst model was established, the energy process of strain-type rock burst was proposed, and the energy supply law of strain-type rock burst energy source to burst rock under different factors was revealed by combining theoretical analysis and numerical simulation. The results show that: in the strain-type rock burst, the ratio of energy supply to total energy of near-field surrounding rock system is negatively correlated with the stiffness ratio of energy supply to burst rock; the higher the elastic modulus of the roof and floor is, the higher ratio of the deep coal is, and the lower ratio of the roof and flooris. The larger depth of the burst rock is, the lower the energy supply ratio of the corresponding deep coal is, and the higher the energy supply ratio of the roof and floor is; under the condition of hard roof and floor strata, the prevention and control of strain-type rock burst is to reduce the energy storage of deep coal and reduce the energy supply of deep coal. Under the condition of soft roof and floor strata, the prevention and control of strain-type rock burst should strengthen roof support and floor pressure relief to reduce the energy supply of roof and floor; the roof and floor are the main energy supply sources for the strong-strain-type rock burst, and the energy of the deep coal plays a scouring effect on the weak-strain-type rock burst.
  • [1] 国家煤矿安全监察局.防治煤矿冲击地压细则[M].北京:煤炭工业出版社,2018. [2] 谢和平.深部岩体力学与开采理论研究进展[J].煤炭学报,2019,44(5):1283-1305. XIE Heping. Research review of the state key research development program of China: Deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283-1305. [3] 何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813. HE Manchao, XIE Heping, PENG Suping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813. [4] 潘一山.冲击地压工程学[M].北京:高等教育出版社,2022. [5] ROMASHOV A N, TSYGANKOV S S. Generalized model of rock bursts[J]. Journal of Mining Science, 1993, 28(5): 420-423. [6] SALAMON M D G. Stability, instability and design of pillar workings[J]. International Journal of Rock Mechanics and Mining Sciences, 1970, 7(6): 613-631. [7] COOK N G W. The basic mechanics of rockbursts[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1963, 64(3): 71-81. [8] SALAMON M D G. Energy considerations in rock mechanics: fundamental results[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1984, 84(8): 233-246. [9] GUO Weiyao, QIU Yue, ZHAO Tongbin, et al. Influence of the variable stoping speed on the occurrence mechanism of rock burst[J]. Geomatics, Natural Hazards & Risk, 2019, 10(1): 2094-2105.[10] KIDYBINSKI A. Bursting liability indices of coal[J]. International Journal of Rock Mechanics and Mining Sciences, 1981, 18(6): 295-304. [11] 李海涛,齐庆新,赵善坤,等.煤矿动力灾害广义“三因素”机理探讨[J].煤炭科学技术,2021,49(6):42 -52. LI Haitao, QI Qingxin, ZHAO Shankun, et al. Discussion on generalized “Three Factors” mechanism of coal mine dynamic disaster[J]. Coal Science and Technology, 2021, 49(6): 42-52. [12] 潘一山.煤矿冲击地压扰动响应失稳理论及应用[J].煤炭学报,2018,43(8):2091-2098. PAN Yishan. Disturbance response instability theory of rockburst in coal mine[J]. Journal of China Coal Society, 2018, 43(8): 2091-2098. [13] 窦林名,何学秋,REN Ting,等.动静载叠加诱发煤岩瓦斯动力灾害原理及防治技术[J].中国矿业大学学报,2018,47(1):48-59. DOU Linming, HE Xueqiu, REN Ting, et al. Mechanism of coal-gas dynamic disasters caused by the superposition of static and dynamic loads and its control technology[J]. Journal of China University of Mining & Technology, 2018, 47(1): 48-59. [14] 潘俊锋.煤矿冲击地压启动理论及其成套技术体系研究[J].煤炭学报,2019,44(1):173-182. PAN Junfeng. Theory of rockburst start-up and its complete technology system[J]. Journal of China Coal Society, 2019, 44(1): 173-182. [15] 谭云亮,郭伟耀,辛恒奇,等.煤矿深部开采冲击地压监测解危关键技术研究[J].煤炭学报,2019,44(1):160-172. TAN Yunliang, GUO Weiyao, XIN Hengqi, et al. Key technology of rock burst monitoring and control in deep coal mining[J]. Journal of China Coal Society, 2019, 44(1): 160-172. [16] 刘学生,谭云亮,宁建国,等.采动支承压力引起应变型冲击地压能量判据研究[J].岩土力学,2016,37(10):2929-2936. LIU Xuesheng, TAN Yunliang, NING Jianguo, et al. Energy criterion of abutment pressure induced strain-mode rockburst[J]. Rock and Soil Mechanics, 2016, 37(10): 2929-2936. [17] 谭云亮,王子辉,刘学生,等.采动诱冲动能估算及冲击危险性评价[J].煤炭学报,2021,46(1):123-131. TAN Yunliang, WANG Zihui, LIU Xuesheng, et al. Estimation of dynamic energy induced by coal mining and evaluation of burst risk[J]. Journal of China Coal Society, 2021, 46(1): 123-131. [18] 许海亮,孙金斗,覃吉宁,等.考虑弹性核作用下的冲击地压形成机理模型试验[J].中国地质灾害与防治学报,2020,31(1):120-126. XU Hailiang, SUN Jindou, QIN Jining, et al. Experimental study on development mechanism of coal bump considering the elastic core effect[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(1): 120-126. [19] 镐振,郭林峰,赵希栋,等.回采巷道围岩冲击破坏能量特征分析[J].煤炭学报,2020,45(12):3995-4005. HAO Zhen, GUO Linfeng, ZHAO Xidong, et al. Analysis of burst failure energy characteristics of mining roadway surrounding rock[J]. Journal of China Coal Society, 2020, 45(12): 3995-4005. [20] 赵同彬,尹延春,谭云亮,等.变刚度加载试验系统的研制及其在煤岩破坏力学行为测试中的应用[J].岩石力学与工程学报,2022,41(9):1846-1857. ZHAO Tongbin, YIN Yanchun, TAN Yunliang, et al.Development of a rock testing system with changeable stiffness and its application in the study on the rock failure mechanical behavior[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(9): 1846-1857. [21] 谭彦,郭伟耀,谭云亮,等.巷道近场围岩能量释放规律及诱冲机制[J].煤炭学报,2021,46(S2):609-620. TAN Yan, GUO Weiyao, TAN Yunliang, et al. Energy release law of roadway surrounding rock and energy-driven rock burst mechanism[J]. Journal of China Coal Society, 2021, 46(S2): 609-620. [22] LI C C, ZHAO Tongbin, ZHANG Yubao, et al. A study on the energy sources and the role of the surrounding rock mass in strain burst[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 154: 105114. [23] 国家矿山安全监察局河北局.河北煤矿安全监察局关于开滦(集团)有限责任公司唐山矿业分公司“8·2”较大冲击地压事故调查处理意见的批复[EB/OL]. (2020-02-20)[2023-05-08]. https://www.hebmaj.gov.cn/plus/view.php?aid=2712. [24] GB/T 25217.2—2010煤的冲击倾向性分类及指数的测定方法[S]. [25] 王猛,王襄禹,肖同强.深部巷道钻孔卸压机理及关键参数确定方法与应用[J].煤炭学报,2017,42(5):1138-1145. WANG Meng, WANG Xiangyu, XIAO Tongqiang. Borehole destressing mechanism and determination method of its key parameters in deep roadway[J]. Journal of China Coal Society, 2017, 42(5): 1138-1145.
计量
  • 文章访问数:  30
  • HTML全文浏览量:  1
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 网络出版日期:  2023-08-30
  • 刊出日期:  2023-08-22

目录

    /

    返回文章
    返回