烧变岩含水层下煤层开采导水断裂带发育规律研究
Study on development law of water conducting fracture zone in coal seam mining under burnt rock aquifer
-
摘要: 为研究新疆阿艾矿区煤层开采导水断裂带发育规律,选取某煤矿1013工作面为研究对象,采用数值模拟、井下分段压水探测及理论计算相结合的方法,分析了煤层开采导水断裂带发育高度。结果表明:煤层开采后工作面周边出现应力集中现象,应力主要分布在距离煤壁0~20 m的煤岩柱上,同时采空区上方顶板岩体内形成减压区,最大减压区位于采空区中心线位置;随着开采距离的增加,导水断裂带发育高度逐渐增高;数值计算得到的导水断裂带发育最大高度为53.50 m,裂采比为16.72;采用井下分段压水方法探测了1013工作面导水断裂带发育高度,得到测试钻孔处最大导水断裂带高度为50.08 m,裂采比为15.65倍;采用经验公式计算得到导水断裂带发育高度分别为42.30、45.78 m,裂采比分别为13.22、14.31倍,3种方法得到的导水断裂带发育高度较为接近,证明研究结果具有一定可靠性。Abstract: In order to study the development law of water conducting fracture zone in coal seam mining in A’ai Mining Area, Xinjiang, 1013 working face of a coal mine is selected as the research object. The development height of water conducting fracture zone in coal seam mining is analyzed by the combination of numerical simulation, underground segmented water pressure detection and theoretical calculation. The results show that the stress concentration phenomenon appears around the working face after coal seam mining, and the stress is mainly distributed on the coal pillar 0-20 m away from the coal wall. A pressure relief zone is formed in the roof rock mass above the goaf, and the maximum pressure relief zone is located at the center line of the goaf. With the increase of mining distance, the stress gradually increases, and the development height of water conducting fracture zone gradually increases. The maximum development height of water conducting fracture zone obtained by numerical calculation is 53.50 m, and the fracture mining ratio is 16.72. The development height of water conducting fracture zone in 1013 working face is detected by underground segmented water pressure method. The maximum height of water conducting fracture zone is 50.08 m and the fracture mining ratio is 15.65 times. According to the empirical formula, the development height of water conducting fracture zone is 42.30 m and 45.78 m respectively, and the fracture mining ratio is 13.22 times and 14.31 times respectively. The development height of water conducting fracture zone obtained by the three methods is close, which proves that the results are reliable.
-
-
[1] 张东升,刘洪林,范钢伟,等.新疆大型煤炭基地科学采矿的内涵与展望[J].采矿与安全工程学报,2015, 32(1):1-6. ZHANG Dongsheng, LIU Honglin, FAN Gangwei, et al. Connotation and prospection on scientific mining of large Xinjiang coal base[J]. Journal of Mining & Safety Engineering, 2015, 32(1): 1-6.
[2] 孙亚军,崔思源,徐智敏,等.西部典型侏罗系富煤区地下水补径排的同位素特征[J].煤炭学报,2017,42(2):293-299. SUN Yajun, CUI Siyuan, XU Zhimin, et al. Characteristics of groundwater circulation condition and complementary diameter in typical Jurassic coal-rich area of western China[J]. Journal of China Coal Society, 2017, 42(2): 293-299.
[3] 董书宁,杨志斌,姬中奎,等.神府矿区大型水库旁烧变岩水保水开采技术研究[J].煤炭学报,2019,44(3):709-717. DONG Shuning, YANG Zhibin, JI Zhongkui, et al. Study on water-preserved mining technology of burnt rock aquifer beside the large reservoir in Shenfu mining area[J]. Journal of China Coal Society, 2019, 44(3): 709-717.
[4] 贺卫中.神府矿区活鸡兔矿井烧变岩水害防治工程研究[J].中国煤田地质,2002,14(2):43-44. HE Weizhong. Study on engineering of prevention and cure on groundwater inundation of burnt rock in Huojitu mine of Shenfu mining area[J]. Coal Geology of China, 2002, 14(2): 43-44.
[5] 施龙青,辛恒奇,翟培合,等.大采深条件下导水裂隙带高度计算研究[J].中国矿业大学学报,2012,41(1):37-41. SHI Longqing, XIN Hengqi, ZHAI Peihe, et al. Calculating the height of water flowing fracture zone in deep mining[J]. Journal of China University of Mining & Technology, 2012, 41(1): 37-41.
[6] 许家林,朱卫兵,王晓振.基于关键层位置的导水裂隙带高度预计方法[J].煤炭学报,2012,37(5):762. XU Jialin, ZHU Weibing, WANG Xiaozhen. New method to predict the height of fractured water-conducting zone by location of key strata[J]. Journal of China Coal So-ciety, 2012, 37(5): 762.
[7] 许进鹏,鹿存金,张学如,等.基于水质水量的导水裂缝带高度分析计算[J].采矿与安全工程学报,2018, 35(6):1248-1252. XU Jinpeng, LU Cunjin, ZHANG Xueru, et al. Analysis and calculation of height of water conducting fractured zone based on water quality and inflow[J]. Journal of Mining & Safety Engineering, 2018, 35(6): 1248-1252.
[8] 国家安全监管总局,国家煤矿安监局,国家能源局,等.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M].北京:煤炭工业出版社,2017. [9] 武强.煤矿防治水手册[M].北京:煤炭工业出版社,2013. [10] 郭文兵,娄高中.覆岩破坏充分采动程度定义及判别方法[J].煤炭学报,2019,44(3):755-766. GUO Wenbing, LOU Gaozhong. Definition and distinguishing method of critical mining degree of overburden failure[J]. Journal of China Coal Society, 2019, 44(3): 755-766.
[11] 赵春虎,靳德武,王皓,等.榆神矿区中深煤层开采覆岩损伤变形与含水层失水模型构建[J].煤炭学报,2019,44(7):2227-2235. ZHAO Chunhu, JIN Dewu, WANG Hao, et al. Construction and application of overburden damage and aquifer water loss model in medium-deep buried coal seam mining in Yushen mining area[J]. Journal of China Coal Society, 2019, 44(7): 2227-2235.
[12] 徐智敏,孙亚军,高尚,等.干旱矿区采动顶板导水裂隙的演化规律及保水采煤意义[J].煤炭学报,2019, 44(3):767-776. XU Zhimin, SUN Yajun, GAO Shang, et al. Law of mining induced water conduction fissure in arid mining area and its significance in water-preserved coal mining[J]. Journal of China Coal Society, 2019, 44(3): 767-776.
[13] LIU Yu, LI Wenping, HE Jianghui, et al. Application of Brillouin optical time domain reflectometry to dynamic monitoring of overburden deformation and failure caused by underground mining[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 133-143. [14] SU Benyu, YUE Jianhua. Research of the electrical anisotropic characteristics of water-conducting fractured zones in coal seams[J]. Applied Geophysics, 2017, 14(2): 216-224. [15] 魏久传,吴复柱,谢道雷,等.半胶结中低强度围岩导水裂缝带发育特征[J].煤炭学报,2016,41(4):974. WEI Jiuchuan, WU Fuzhu, XIE Daolei, et al. Development characteristic of water flowing fractured zone under semi-cemented medium-low strength country rock[J]. Journal of China Coal Society, 2016, 41(4): 974-983.
[16] 刘英锋,王世东,王晓蕾.深埋特厚煤层综放开采覆岩导水裂缝带发育特征[J].煤炭学报,2014,39(10):1970-1976. LIU Yingfeng, WANG Shidong, WANG Xiaolei. Development characteristics of water flowing fractured zone of overburden deep buried extra thick coal seam and fully-mechanized caving mining[J]. Journal of China Coal Society, 2014, 39(10): 1970-1976.
[17] 黄万朋,高延法,王波,等.覆岩组合结构下导水裂隙带演化规律与发育高度分析[J].采矿与安全工程学报,2017,34(2):330-335. HUANG Wanpeng, GAO Yanfa, WANG Bo, et al. Evolution rule and development height of permeable fractured zone under combined-strata structure[J]. Journal of Mining & Safety Engineering, 2017, 34(2): 330-335.
[18] 郭兵兵,孙文标,刘长武.煤层开采导水裂隙带发育高度研究综述[J].科学技术与工程,2015,15(17):100-108. GUO Bingbing, SUN Wenbiao, LIU Changwu. Research overview on the height of water flowing fractured zone after coal mining[J]. Science Technology and Engineering, 2015, 15(17): 100-108.
[19] 柴华彬,张俊鹏,严超.基于GA-SVR的采动覆岩导水裂隙带高度预测[J].采矿与安全工程学报,2018, 35(2):359-365. CHAI Huabin, ZHANG Junpeng, YAN Chao. Prediction of water-flowing height in fractured zone of overburden strata based on GA-SVR[J]. Journal of Mining & Safety Engineering, 2018, 35(2): 359-365.
-
期刊类型引用(3)
1. 乔兰,尹雅,李庆文,苗淼. 碳化硅增强相变充填体热力学性能研究. 岩土力学. 2024(12): 3624-3634+3644 . 百度学术
2. 李佳帅,徐超. 外掺碳化硅混凝土力学性能的试验研究. 山西建筑. 2022(13): 119-121 . 百度学术
3. 宁波,闫艳,左夏伟,梁仁旺. 铁尾矿砂混凝土力学特性实验研究. 矿产综合利用. 2021(04): 159-164+175 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 33
- HTML全文浏览量: 0
- PDF下载量: 16
- 被引次数: 6